Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体

Answer

智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。

智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。

智能体的类型:

  1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。
  2. 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。
  3. 目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。
  4. 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。
  5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。

智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、在 LinkerReader 节点前的代码节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点根据指定的关键词句搜索相关网络内容。LinkerReader 节点从必应搜索到的网页链接中获取网页详细内容。在 LinkerReader 节点前的代码节点用于等待 2 - 3 秒,错开众多 LinkerReader 节点的执行时间,避免拥塞。代码节点将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url 信息,以备后面大模型进行处理。大模型节点根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点将 7 部分大模型节点生成的内容拼接并流式输出。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

【市场分析报告】-超级宣发-作品说明

本智能体主要通过一个工作流实现,采用单Agent(工作流模式)。[heading3]2工作流主要配置[content]工作流全景图:工作流主要节点说明:整个工作流按照市场分析报告内容划分,分成7个分支处理,每个分支调研并生成报告中的一部分。这样可以最大的发挥并行处理的效率。文本处理节点,将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点,根据指定的关键词句搜索相关网络内容。LinkerReader节点,从必应搜索到的网页链接中获取网页详细内容。此节点采用批处理方式,每批处理搜索结果中的一条链接。在LinkerReader节点前的代码节点,用于等待2-3秒,可以将众多LinkerReader节点的执行时间错开,避免拥塞。代码节点,将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url信息,以备后面大模型进行处理。大模型节点,根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点,将7部分大模型节点生成的内容拼接并流式输出。

Others are asking
关于智能体的未来
未来的智能体具有广阔的发展前景: 1. 完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。例如,流行的 RAG 架构并非智能体式,而是以推理和外部记忆为基础。一些设计如 OpenAI 的结构化输出支持工具使用,但应用程序的步骤仍由代码预先确定。而当 LLM 置于应用程序的控制流中并能动态决定行动、工具使用和输入响应时,智能体才真正出现。 2. Menlo 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型,包括决策智能体、轨道智能体和通用人工智能体。 3. 像 Coze bot 这样的智能体将随着 AI 技术进步和市场需求变化不断优化升级,拓展应用场景,覆盖更多行业和领域,提供更智能和个性化的资讯推送服务。 4. 如“一分钟提升认知系统”这样的智能体,未来将进一步完善知识库,引入更先进的 AI 技术,提供更多个性化学习方案,有望在自主学习、兴趣探索、问题解决等领域发挥重要作用,并在比赛中取得优异成绩。
2025-03-06
如何搭建AI智能客服
搭建 AI 智能客服可以参考以下步骤: 1. 明确核心构思:利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时对接人工客服,在智能助手无法解决用户问题时,用户可以快速转接到人工客服,确保问题的及时解决。这种人机结合的模式,有助于提升整体服务质量和客户满意度。 2. 具体操作步骤: 10 分钟在网站上增加一个 AI 助手: 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。 零成本、零代码搭建一个智能微信客服: 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让其不仅会写,还会通过语音跟您交流。 点击“发布”,选择发布平台,如 Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金等。
2025-03-06
我是一个公司的平面设计师,经常设计海报一类的工作,怎样才能用人工智能帮助到我。
作为一名平面设计师,您可以通过以下方式利用人工智能来辅助您的工作: 一、使用 AI 海报生成工具 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能能帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 二、参考案例分享 以东阿阿胶海报设计为例,拆解步骤如下: 1. 得到需求——提取元素——绘制线稿——用 controlnet 转绘上色——ps 优化——定稿。 2. 需求元素:风格要潮流插画,还要有唐代元素和国潮(前期基本上是沟通成本,主要定线稿)。 3. 提取元素:获取的信息需要体现产品图,需要体现唐代元素,需要 logo 在中心位置,按照需求开始绘制线稿。 4. 线稿绘制:沟通的元素是牡丹花、驴子(最后换成了琵琶)、人参和产品图和 logo,所以进行线稿调整绘制(中间很多细节沟通)最终定下线稿(里面很多元素都是拼接的)。 5. 拆分元素线稿:这一步非常重要,因为会涉及到后续元素替换等问题,比如单个 logo、产品等,提取出单独元素,进行绘制,最后进行替换。 6. 单个元素绘制:这样会让单个元素更加精致,也方便后期替换。 7. 然后利用拼接好的线稿进行大量跑图抽卡,选出一张最合适的进行 ps 优化。 8. 整体拼接上色后的效果(将单独跑的元素在 ps 里替换优化,再过一遍 sd 进行溶图放大)得到以下效果。 9. 最终客户把驴子去掉了,换成了一把琵琶,也是同产品图一样的做法,最后把琵琶替换掉驴子,得到定稿图。 三、相关模型和关键词 上色运用的大模型:GhostMix 鬼混_V2.0 。 lora 模型:“盒子系列——平面国潮插画_v1.0:182ba9e2f576 。 controlnet 模型:“Module:lineart_coarse,Model:contr 。 关键词:yellow background,Fashion,international blockbusters,fashion posters,fantasy,yellow,black and red tones,yellow background,peonies,donkeys,product packaging expert master,<lora:盒子系列——平面国潮插画_v1.0:0.3> 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-06
我想养育带有我的特色的智能体
以下是关于养育带有您特色的智能体的相关信息: 1. 从产品角度思考 Agent 设计:参与相关比赛,不要过于强迫自己想出创业点子,而是通过了解不同事物、锻炼发现问题的能力、关注低效事物和重大技术变革,在某个时刻灵感可能会涌现。例如有人决定创造一个独特、有趣且有意义的智能体,让用户能回顾出生那天的新闻并找到自我线索。 2. 提示词母体系列(2):再进阶,一分钟创建您的拟人化小助理。在上一篇文章基础上,探讨如何创造更拟人化、具个性的智能体,并利用豆包角色扮演模型。文章将探讨拟人化提示词的设计思路,分享实用提示词,通过实际例子展示如何生成拟人化提示词模板,并在不同模型中测试效果。 3. 输入观点一键生成文案短视频中的 Coze 智能体创建:创建工作流中每个节点有具体细节,如“开始”节点有 4 个输入变量,“大模型”节点使用 DeepSeek R1 模型,提示词要求不复杂,“文本”节点按“句号”分句等。
2025-03-06
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点根据指定的关键词句搜索相关网络内容。LinkerReader 节点从必应搜索到的网页链接中获取网页详细内容。在 LinkerReader 节点前的代码节点用于等待 2 3 秒,将众多 LinkerReader 节点的执行时间错开,避免拥塞。代码节点将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url 信息,以备后面大模型进行处理。大模型节点根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点将 7 部分大模型节点生成的内容拼接并流式输出。
2025-03-06
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、在 LinkerReader 节点前的代码节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点根据指定的关键词句搜索相关网络内容。LinkerReader 节点从必应搜索到的网页链接中获取网页详细内容。在 LinkerReader 节点前的代码节点用于等待 2 3 秒,错开众多 LinkerReader 节点的执行时间,避免拥塞。代码节点将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url 信息,以备后面大模型进行处理。大模型节点根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点将 7 部分大模型节点生成的内容拼接并流式输出。
2025-03-06