Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用deepseek打造个人知识库

Answer

以下是关于用 DeepSeek 打造个人知识库的相关信息:

  • 可以先将文本拆分成若干小文本块(chunk),通过 embeddings API 将其转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提出问题时,将问题也转换成向量,与储存库中的向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API,从而提高回答的准确性和相关性。例如对于“此文作者是谁?”的问题,可以直观或通过比较 embeddings 向量找到关联度最高的文本块,如“本文作者:越山。xxxx。”。
  • 在 RAGFlow 中,可配置本地部署的 DeepSeek 模型。选择 Ollama 并配置相关信息,导入嵌入模型用于文本向量化。设置系统模型后,可创建知识库,导入文件(可设置文件夹)并解析,解析速度取决于本机 GPU 性能。解析完成后进行检索测试,没问题即可进入聊天界面,还可自行设置助理。
  • 此外,AI 编程与炼金术中也涉及 DeepSeek 的相关知识,如在不同章节中的应用,包括给老外起中文名、驱动 Life Coach 等,具体内容可通过相关链接进一步查看。
Content generated by AI large model, please carefully verify (powered by aily)

References

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

栋人佳Dougle整理:Git使用

我们返回RAGFlow中,打开右上角设置,进入模型提供商,显示如下界面接着我们就开始配置我们本地部署的DeepSeek模型选择Ollama,配置如下信息,模型是什么取决你运行的模型是什么基础URL如下配置设置完成之后,点击确定即可,然后显示如下界面那么再导入一个embedding模型,这个嵌入模型可以用于文本的向量化导入成功之后,界面如下接着我们设置系统模型设置设置好后,就可以返回知识库,进行创建知识库了进入数据集,导入文件即可,当然可以设置文件夹当作知识库,大家自行设置导入完毕之后,需要将文件进行解析之后,大模型才会懂得文件内容是什么。可以批量进行解析,文件解析速度按照你本机的GPU性能,即显卡的性能,越好的显卡,解析越快,越差则反之解析好之后,进入检索测试即可测试没有问题,那么对于文件来说,模型是可以进行检索的,下一步就可以进入聊天界面了助理设置可以自行进行设置

AI编程与炼金术:Build on Trae

蓝色文字跳转到文档对应位置)(不断更新)|章节_[三.使用DeepSeek R1给老外起中文名](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-DyEMdmCPOo98S6xbPfNcsuEOnuh)|知识点_[Node.JS安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PVnndBSV5oWOukx38tKcw2CPnub)|[申请DeepSeek R1 API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-TrXednqLAoH3VLxrUiYc1Pb9nhf)|[网页接入DeepSeek API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UK5xdzhiaoo9RkxHR5bcs30pnV8)||-|-|-|-||[一.Trae的介绍/安装/疑难杂症](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R4GvdgOzeoC9mOxd1hScuql6nVY)|[Python安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Kcojdhid9oWJPjxAvEOczRt0nkg)||||[二.图片字幕生成器](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Yev6dqzNmolizDxG2PWcKj8Pn8y)|[用多模态复刻产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PHwVdl7gCoZEehxUmiUcDeO8nde)||||[四.DeepSeek R1驱动的Life Coach](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-AyjYdKtFhobv6Zxrq71cYJubnug)|[使用AI Rules](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MBCsdTfLzoRnE9xQm3PcWgdFnEf)|[使用Git进行版本管理](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-S86bdFV1XoE66LxBqVhcqdYFnze)|[Github+Vercel进行云端部署](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-GgVmdqPMqoilxFxONuCcnbNpn2g)||[五.DeepSeek驱动的网页金句卡片生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-ZDQHd6QnqoH7SEx3UXwchSOEndc)|[使用Chat完善产品需求(PRD)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Q21mdyyRIoKZfdxT7rZcwD5lnwd)|[开发浏览器插件](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Mgsvd3OnZousC0x3m3fcqRBanhd)|[Chrome插件logo自动生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-J4dcdT2IAoJUXhx2UKKcElR0n6g)||[六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MbTBdqIKBowgXExFCLqcQ0KTn5c)|[创建带有AI能力的飞书多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R94pdLmyio0NCpxXUGzcJIMonTe)|[用网页呈现多维表格里的内容](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-KMaCd5GQKopqChxO2KycXXG3n5c)|||[七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UDIsdsmulox4LcxK2CdcwjGgny6)|[浏览器插件将信息一键插入多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-O1B2djb7voeVsUxJxLHcyyo6n3c)|[将复杂产品分拆成多个简单产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UOx6dg3aVoeaYpx7M6hcurwUnGc)||

Others are asking
提示词deepseek
以下是关于提示词“DeepSeek”的相关内容: 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 角色为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且以特定数组形式呈现。 让 DeepSeek 能力更上一层楼的 HiDeepSeek: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 使用方法:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,阅读开场白后正式开始对话。 设计思路:将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 什么是 HiDeepSeek:为解决 AI 答案思考过程不可见的问题而设计,让 AI 像人类交流时展示思考过程,技术上通过特别规则实现,例如老师使用时会清晰展示教学方案的思考过程,总的来说是让 AI 思维过程透明的工具。
2025-03-04
关于deepseek有什么学习材料吗
以下是关于 DeepSeek 的一些学习材料: 此外,还有以下相关内容: 宝玉日报 1 月 27 日中关于 DeepSeek 的讨论,包括其在全球 AI 社区的意义、技术突破、资源分配策略、创新路径以及中国在 AI 追赶中的潜力与挑战等。相关链接: 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要,其中包含关于 DP 模型的使用分享、音系学和与大模型互动的分享、Deepseek 的介绍与活动预告等内容。
2025-03-04
Deepseek的优点
DeepSeek 的优点包括: 1. 核心是推理型大模型,不需要用户提供详细步骤指令,能通过理解用户真实需求和场景提供答案。 2. 能够理解用户用“人话”表达的需求,无需用户学习和使用特定提示词模板。 3. 在回答问题时能够进行深度思考,而非简单罗列信息。 4. 可以模仿不同作家的文风进行写作,适用于多种文体和场景。 此外,DeepSeek 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,数学能力经过优化表现不错。但在专业论文总结方面稍弱,编程能力略逊于 GPT 。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。更多提示词技巧请查看
2025-03-04
deepseek论文讲解
以下是关于 deepseek 论文解读的相关内容: 直播视频回放:可通过相关链接获取。 相关论文下载:提供了两篇论文,pc 端鼠标移到文章上面,会有下载链接,手机端类似。分别是。 技巧分享:包括万能提示词的使用,以及提示词的优化方法和步骤。 学习笔记心得:可参考等内容。 媒体报道和网络文章精选:涵盖了众多主流媒体和作者的相关文章,如等。
2025-03-04
如何能用到满血deepseek
以下是使用满血 DeepSeek 的方法: 1. 阿里云百炼满血版 DeepSeek: 开通满血版 R1 模型:在模型广场找到 DeepSeekR1 并授权。页面上有免费的 100 万额度及已使用量,每人免费送 100 万额度,过期浪费。此模型是阿里云自主部署且经推理优化,性能强于多数市面上的满血版本地部署。对比 DeepSeek 官网的 API,在同样价格下提供更稳定的模型服务。用完还有免费的蒸馏版 R1 模型,也是 100 万 token。这些模型可在“首页”或“直接体验”直接使用,也可进行模型效果对比或用 API 调用,如 chatbox 直接使用。 百炼应用开发:新增模板,可从模板学习应用搭建。 联网搜索:像知识库检索一样简单方便,直接配置可用,结合 Deepseekr1 更强大,如搜索天气时会多方验证。 新鲜的动态 few shot:小技巧,可用于对模型某些做不好、易出幻觉的任务通过 prompt training 强行修正。 工作流:用工作流让不同模型在同一任务创作。 阿里云百炼地址:https://bailian.console.aliyun.com/ 2. 字节火山 DeepSeek: 获取 DeepSeekR1 满血版密钥: 注册并登录火山引擎,点击立即体验进入控制台。https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台) 创建一个接入点,点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通。若无提示则直接到第 5 步点击确认接入。 确认无误后点击“确认接入”按钮。 自动返回创建页面,复制接入点的 ID 保存。 点击【API 调用】按钮,复制 API Key 并保存。若没有 API key 则点击【创建 API key】。 火山引擎的优势:价格感人,默认提供高达 500 万 TPM 的初始限流,推理速度处于第一梯队。结合相关教程可打造专属 AI 助理。
2025-03-04
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 生成小红书爆款单词视频:输入单词主题、图片风格、单词数量,选择 deepseekr1 模型生成单词数组。角色为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容并以数组形式呈现。 Deepseek 时代提示词的关键诉求:完整的长提示词可能不如片段有效甚至干扰模型思考,在 deepseek 时代或模型有深度思考能力时,用户只需在关键点引导,采用“关键诉求直通车”模式,如像对聪明助理打暗号。 让 DeepSeek 生成相机运动轨迹的提示词:以往提示词是场景、构图等的组合,现在可以把这些提示词以“相机运动轨迹”的方式描述给 DeepSeek,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。
2025-03-04
我是一个ai小白,我该如何使用这个知识库
对于 AI 小白来说,使用这个知识库可以参考以下内容: 1. 了解基本概念: 大语言模型就像一个读过无数书、拥有无穷智慧的人,擅长公共知识、学识技能和日常聊天,但在工作场景下需要提示词来明确角色和专注技能,知识库则相当于给员工的工作手册。 例如设定阿里千问模型为 AI 模型,角色为“美嘉”,知识库为《爱情公寓》全季剧情,从而实现特定场景的问答。 2. 科普资源: 对于对 AI 没太多概念的纯纯小白,可以通过以下资源快速了解: 通识篇:现有常见 AI 工具小白扫盲,文章链接(1 小时 32 分开始)。 通识篇:AI 常见名词、缩写解释,文章链接。 3. 从常见工具开始体验: 工具入门篇(AI Tools):数据工具多维表格小白之旅,文章链接,适用于 Excel 重度使用者、手动数据处理使用者、文件工作者,可满足 80%数据处理需求。 工具入门篇(AI Code):编程工具Cursor 的小白试用反馈,文章链接,适用于 0 编程经验、觉得编程离我们很遥远的小白。 工具入门篇(AI Music):音乐工具Suno 的小白探索笔记,文章链接,适用于 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。
2025-03-04
怎么用飞书搭建一个人工智能知识库
以下是使用飞书搭建人工智能知识库的相关内容: 1. 参考文章: 《这可能是讲 Coze 的知识库最通俗易懂的文章了》:介绍了一系列关于 AI 知识库的知识,包括“通往 AGI 之路”这个使用飞书软件搭建的 AI 知识库,以及相关文章对 AI 时代知识库的讲解,读完可收获 AI 时代知识库的概念、实现原理、能力边界等内容。 《【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档》:其中提到创建知识库时可使用手动清洗数据,包括在线知识库和本地文档的处理方式,如在线知识库需创建飞书在线文档,每个问题和答案以“”分割等;还介绍了发布应用时要确保在 Bot 商店中能搜到。 《「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人》:提到创建知识库的路径为个人空间知识库创建知识库,文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用本地文档,可按照操作指引上传文档、分段设置、确认数据处理,同时提到知识库内容切分粒度的小技巧,如使用特殊分割符“”。 2. 总体步骤: 确定所需的数据清洗方式,如手动或自动清洗。 对于在线知识库,创建飞书在线文档,每个问题和答案以特定方式分割,选择飞书文档、自定义等选项,并可编辑修改和删除。 对于本地文档,注意拆分内容以提高训练数据准确度,按照固定方式进行人工标注和处理。 完成创建后可发布应用,确保在 Bot 商店中能搜到。
2025-03-04
你有 AI+知识库应用的架构图吗
以下是 AI+知识库应用的架构图相关内容: 一、问题解析阶段 1. 接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,确保问题向量能有效用于后续检索。 二、知识库检索阶段 1. 知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段并抽取传递给下一步骤。 2. 文档向量化:要在向量中进行检索,知识库被转化成一个巨大的向量库。 三、信息整合阶段 1. 接收检索到的信息,与上下文构建形成融合、全面的信息文本。 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,包括对信息的来源、时效性和相关性进行验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 四、大模型生成回答阶段 1. 整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。因为这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 五、其他预处理阶段 1. 文本预处理:包括去除无关字符、标准化文本(例如将所有字符转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型来完成。 3. 特征提取:对于整个问题句子,可能会应用进一步的特征提取技术,比如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示。 4. 向量优化:问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。
2025-03-04
coze构建知识库
构建 Coze 知识库的步骤如下: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以“”分割,选择飞书文档、自定义的自定义,输入“”,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,将海报内容训练到知识库中。例如画小二 80 节课程分为 11 个章节,先放入大章节名称内容,再按固定方式细化处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 3. 标准流程搭建产品问答机器人: 收集知识:确认了解知识库支持的数据类型,收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开的一些内容(可安装 Coze 提供的插件采集)。 创建知识库:路径为个人空间知识库创建知识库,支持本地文档、在线数据、飞书文档、Notion 等文档类型,本次可使用本地文档,按照操作指引上传文档、分段设置、确认数据处理,可使用特殊分割符“”,分段标识符号选择“自定义”,内容填“”。 希望以上内容对您有所帮助。
2025-03-04
哪里可以找到了解AI模型微调和RAG知识库的外包开发团队?
以下是一些可能找到了解 AI 模型微调和 RAG 知识库的外包开发团队的途径: 1. 相关技术社区和论坛:例如一些专注于 AI 开发的社区,开发者可能会在其中分享经验和提供服务。 2. 专业的自由职业者平台:如 Upwork、Freelancer 等,您可以在这些平台上发布需求,寻找合适的团队或个人。 3. 参考行业报告和研究:部分报告中可能会提及相关的优秀开发团队或公司。 4. 联系 AI 领域的知名机构或公司:他们可能会推荐或提供相关的外包服务。 5. 社交媒体和专业群组:在如 LinkedIn 等社交媒体上的 AI 相关群组中发布需求,可能会得到相关团队的回应。 另外,从提供的资料中,以下信息可能对您有所帮助: 红杉的相关分析提到,迁移学习技术如 RLHF 和微调正变得更加可用,开发者可以从 Hugging Face 下载开源模型并微调以实现优质性能,检索增强生成(RAG)正在引入关于业务或用户的上下文,像 Pinecone 这样的公司的向量数据库已成为 RAG 的基础设施支柱。彬子的经历中,有出海垂直领域 Agent 平台的项目经理咨询 RAG 策略优化。2024 人工智能报告中提到对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题得到解决。
2025-03-04
知识库如何搭建
搭建知识库的方法主要有以下几种: 1. 利用本地部署大模型搭建个人知识库: RAG 技术:利用大模型的能力搭建知识库是 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。RAG 的应用包括文档加载(从多种不同来源加载文档)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。 文本加载器:将用户提供的文本加载到内存中,便于进行后续的处理。 2. 使用 Dify 构建知识库: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述。 配置索引方式:Dify 提供了三种索引方式供选择,根据实际需求选择合适的方式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库。 3. 在 Coze 智能体中创建知识库: 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档中,每个问题和答案以分割,选择飞书文档、自定义的自定义,输入,然后可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度。例如画小二课程分为多个章节,先放入大的章节名称内容,再按固定方式处理章节内详细内容。 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-03-03
我想打造一个量化交易模型
打造一个量化交易模型需要考虑以下几个方面: 一、预训练大模型与金融量化 1. 大型的系统工程 大多数量化算法的核心数据是公开的量价数据,大模型预训练的数据中最重要的也是公开数据,各家会有一些独有数据来源,但占比不大。 量化和大模型的整体算法逻辑基本类似,决定模型能力好坏的是大型系统工程能力。 作为大型系统工程,量化和大模型都需要大型的计算集群,对性能和效率有极致追求。 细节在大型系统工程中十分关键,量化交易系统包含交易执行、风控等多个方面,大模型预训练也包含大量细节。 2. 关键技术变得不公开 金融量化是非常闭源的系统,各家的交易系统是最大的秘密武器,公开部分少。 现在大模型也在往闭源方向发展,几个巨头的核心模型都开始走向闭源。 二、应用开发 1. 轻量化 MMM的部署运行 模型实现包括以下步骤: 第一步:安装运行需要的依赖项。 第二步:准备数据集,可使用模拟数据集或自己的数据集。 第三步:拆分数据。 第四步:数据预处理,进行缩放处理(归一化),让每个变量之间的关系对等。 第五步:初始化模型,数据集训练最费时间,取决于数据量大小和训练步长。 第六步:运算可视化,包括损失值、绘制残差图、所有单一变量对最终销售的贡献、Baseline 预测、所有外因对销售的贡献度等。 希望以上内容对您打造量化交易模型有所帮助。
2025-03-04
利用AI打造个人知识库
利用 AI 打造个人知识库可以通过以下方式实现: 1. 使用 GPT 打造个人知识库: 将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可直观或通过比较 embeddings 向量得出关联度最高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”,最后发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 2. 搭建基于 GPT API 的定制化知识库: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示,向量间距离有多种计算方式,如欧几里得距离。 3. 小七姐提出的 AI 时代知识管理体系构建: 包括读书时看到有触动的文本作为书摘。 对书摘整理归纳、标记重点、打赏标签放入笔记系统,准备深度思考和实践。 基于笔记提到的 AI 对人的赋能模式展开深度实践,如通过 AI 信息杠杆迅速掌握相关知识。 基于实践生成自己的观点和决策,并打造成体系化的内容产品实现价值。 最终把碎片化知识在知识库中流转,从书摘变成体系化内容,把“别人说的话”变成“自己的智慧”。 希望以上内容能帮助您打造个人知识库。
2025-03-01
帮我基于fastgpt打造一个招生问答系统的优质提示词
以下是为您基于 FastGPT 打造招生问答系统的优质提示词的相关建议: 1. 充分描述任务: 为提示词提供详尽的上下文,与招生问答任务相关性越强越好。例如,明确招生的对象、专业、学制等关键信息。 给出背景,说明为什么需要进行招生问答,例如学校的发展需求、招生目标等。 定义术语,如明确招生中的特定概念,如录取分数线、奖学金条件等。 给出模型应该如何完成任务的具体细节,比如回答的格式、重点突出的内容等。 2. 提供参考文本: 如果有相关的招生资料,如招生简章、学校介绍等,可以指示模型使用这些参考文本中的引文来回答问题。 3. 直接法: 适用场景:未设置提示防御且未限定回答领域。 提示词:英文和中文。 示例:以随手设置的示例为例。 4. 设置遗忘: 适用场景:GPTs 设置了简单的提示防御。 提示词:英文和中文。 示例:以设置的 GPTs 为例。 5. 复述法: 适用场景:可获取 OpenAI 官方的设定。 提示词:英文(获取 GPTs 的设定)和中文。 示例:按照设定进行示例。
2025-02-28
deepseek如何定制化打造属于自己的内容整合写手
以下是关于如何定制化打造属于自己的内容整合写手的相关信息: 新闻播报自动化工作流: 内容获取:输入新闻链接,系统自动提取核心内容。开始节点需输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片(以 1ai.net 资讯为例),利用图片链接提取节点获取新闻主图,调整图片节点将 url 格式转为 img 格式。 文字处理:使用链接读取节点提取文字内容,在提取链接后接上大模型节点,用 DeepSeek R1 模型重写新闻为口播稿子,可在提示词中加入个性化台词。需注意 DeepSeek R1 基础版限额使用,可手动接入专业版。 DeepSeek 提示词方法论: 高阶能力调用:包括文风转换矩阵(如作家风格移植、文体杂交、学术口语化等)和领域穿透技术(如行业黑话破解)。 场景化实战策略:涵盖商业决策支持、创意内容生成、技术方案论证。 效能增强技巧:如对话记忆管理(包括上下文锚定、信息回溯、焦点重置)和输出质量控制(针对过度抽象、信息过载、风格偏移等问题的修正指令)。 特殊场景解决方案:包括长文本创作(分段接力法、逻辑粘合剂)和敏感内容处理(概念脱敏法、场景移植法)。 AI 编程与炼金术:Build on Trae: 相关知识图谱包含多个章节,如 Trae 的介绍/安装/疑难杂症、图片字幕生成器、DeepSeek R1 驱动的 Life Coach、DeepSeek 驱动的网页金句卡片生成等,涉及 Node.JS 安装、Python 安装、申请 DeepSeek R1 API、网页接入 DeepSeek API 等知识点。
2025-02-25
如何打造自己的智能体
打造自己的智能体可以参考以下步骤和要点: 1. 了解智能体的概念: 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 智能体的核心在于有效控制和利用大型模型,提示词设计直接影响其表现和输出结果。 2. 选择开发平台和工具: 可以基于一些公开的大模型应用产品,如 Chat GLM、Chat GPT、Kimi 等。 例如字节的扣子,其是新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。 智谱 BigModel 也是一个选择,注册获取 Tokens 资源包后,可进入智能体中心创建智能体。 3. 具体创建步骤: 对于扣子,可通过简单 3 步创建智能体:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像。 对于智谱 BigModel: 注册智谱 Tokens 智谱 AI 开放平台。 查看自己的资源包,确认本次项目会使用到的模型。 进入智能体中心我的智能体,开始创建智能体。 4. 不断调试和完善:智能体的开发是一个不断学习和进步的过程,不要害怕犯错,通过实践更好地理解其潜力,发掘在各种应用场景中的可能性。
2025-02-07
如何打造自己的AI办公生态
要打造自己的 AI 办公生态,可参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 “AI 前线”能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 Bot 的目的、核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等整理。 创建自己的【知识库】,用来回答 AI 相关知识。 创建一个【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计“AI 前线”Bot 详细步骤: 展示“AI 前线”Bot 的【最终效果】界面。 编写【prompt】提示词,设定 Bot 的身份和目标。 创建【知识库】,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为:个人空间知识库创建知识库。本次使用【本地文档】,注意知识库的内容切分粒度,可在内容中加上特殊分割符“”,分段标识符号选择“自定义”,内容填“”。 创建【工作流】,告诉 AI 机器人应按什么流程处理信息。创建工作流路径:个人空间工作流创建工作流。工作流设计好后,先点击右上角“试运行”,测试无误后点击发布。若任务和逻辑复杂,可结合左边“节点”工具实现,如调用大模型、数据库、代码等处理。但工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。
2025-01-11
coze如何复制别人的工作流到自己个人空间
要在 Coze 上复制别人的工作流到自己个人空间,您可以按照以下步骤进行操作: 1. 在 Coze 上新建一个工作流,逐步导入别人项目的核心流程。整个工作流分为若干个节点,每个节点完成一个特定的任务。 2. 工作流被分为了初始翻译、反思优化、结果输出等几个主要部分,每一部分都对应了若干个节点。 3. 首先是开始节点,在这里需要选择翻译的源语言和目标语言,还可以设置一些其他参数,如翻译的语言特色等,此参数会影响翻译效果和效率,建议根据实际情况调整。 4. 接下来是初步的翻译大模型节点,选择一个大模型对源语言文本进行初始翻译。 5. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 6. 根据弹窗要求,自定义工作流信息,点击确认后完成工作流的新建。 7. 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供一系列能力工具,拓展 Agent 的能力边界)、大模型(调用 LLM,实现各项文本内容的生成)、代码(支持编写简单的 Python、JS 脚本,对数据进行处理)。 8. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。
2025-03-04
AI或者智能体能不能部署在个人NAS上
AI 或者智能体是可以部署在个人 NAS 上的。端侧大模型能部署在手机端等设备,参数量小,可利用自带芯片或处理器运算,主要通过压缩来解决存储和性能问题,如减少模型参数量和计算复杂度。此外,像 coach 等 AI 工程平台新版本有很多模板,可创建智能体,还能通过工作流节点调用和 prompt 构建提示词,调用插件、图像流、知识库等。OpenAI 会陆续更新 ChatGPT 应用,让其具备 Assistant Agent 能力,Google 也计划推出类似功能。智能体除了端到端的多模态和实时性特点外,还能让终端参与分担一部分模型的计算量。在这种趋势下,能设计新硬件产品或重新设计现有产品,如让 Google Glass 复活,改变手机的设计和交互方式等。
2025-03-04
如何用AI搭建个人知识库
以下是用 AI 搭建个人知识库的方法: 首先,要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入(投喂)定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识往往不够。为解决此问题,OpenAI 提供了 embedding API 解决方案。 embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。比如,向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 具体操作时,可将大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,并在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 例如,有一篇万字长文,拆分成多个 Chrunks 包含不同内容。如果提问是“此文作者是谁?”,可以直观地看出与问题关联度最高的文本块,通过比较 embeddings 向量也能得到结论。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 此外,还有案例展示了如何在 AI 时代把碎片化信息内化为自己的知识/智慧。比如在读书时看到有触动的文本,将其整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。基于笔记中提到的 AI 对人的赋能模式,展开深度实践,生成自己的观点和决策,并打造成体系化的内容产品,实现价值。通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“自己的智慧”。
2025-02-28
有没有这样的产品,能够通过输入X主页,获取这个人的历史所有推特的信息分析与总结
目前没有这样合法合规且普遍可用的产品。获取他人的推特信息需要遵循相关平台的规定和法律法规,未经授权获取他人的信息是不被允许的。
2025-02-28