要在 Coze 上复制别人的工作流到自己个人空间,您可以按照以下步骤进行操作:
首先,我们在Coze上新建一个工作流,逐步导入吴恩达项目的核心流程。整个工作流分为若干个节点,每个节点完成一个特定的任务。通过将这些节点组合起来,就形成了一个完整的翻译流程。我们先来看看导入后的整体工作流,以及它的测试效果。我们可以看到,工作流被分为了初始翻译、反思优化、结果输出几个主要部分,每一部分都对应了若干个节点。当我们运行测试的时候,可以清晰地看到每个节点的执行过程和结果。给大家展示一下测试的效果,我们输入一段英文,让工作流自动翻译成中文。这样一对比,优化后的翻译感觉就好多了,语句通顺了很多,用词也更加准确贴切,整体的翻译质量有了不少的提升。接下来,我就对每个节点的配置做一个核心讲解,让大家学会如何根据自己的需求来定制翻译流程。1.首先是开始节点,在这里我们需要选择翻译的源语言和目标语言,比如英语到中文。我们还可以设置一些其他参数,比如翻译的语言特色等,这个参数会影响翻译的效果和效率,不过我将其作为可选选项,建议根据实际情况进行调整。1.接下来是初步的翻译大模型节点,这里我们需要选择一个大模型,来对源语言文本进行初始翻译,这样才好对比并且以此作为进一步的反思优化。Coze平台提供了多种AI大模型选择,这里我直接选了MiniMax,然后提示词我们就直接参考吴恩达教授的相关内容即可。提示词:1.接下来就是选择器节点,因为我们需要判断用户填写的要求中有没有需要特别的语言翻译特色或者口音,如下图:
首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。
首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。