Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用AI开发APP

Answer

以下是用 AI 开发 APP 的步骤和建议:

  1. 基础小任务
    • 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。
    • 对于特定需求,如开发 chrome 插件,可要求 AI 生成包含典型文件和功能的简单示范项目,并讲解每个文件的作用和程序运行的逻辑。
    • 如果使用 o1-mini,可在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(Windows 机器则是 create.cmd),勤勉的 o1-mini 会生成代码并给出提示,方便一次性生成多个目录和文件。
  2. 明确项目需求
    • 通过与 AI 的对话逐步明确项目需求。
    • 让 AI 像高级且懂技术的产品经理一样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点,一问一答,由全局到细节逐步梳理。
    • 让 AI 帮助梳理出产品需求文档,在后续开发中每次新起聊天时将文档发给 AI 并告知在做的功能点。
  3. 逐步学习和开发
    • 按照项目规划,学习一个 POC,并将其应用到大项目中,再学一个 POC,再运用。
    • 遇到错误时,复制错误信息和相关代码给 AI 让其找错误并修复。对于可识图的 claude 或 GPT4o,截图、错误信息和代码三件套会很有用。
    • 当 AI 给出错误方案时,可找文档(让 GPT 提供文档链接或问 perplexity)或在 stackoverflow 上找答案(注意回答和评论的日期),然后将其提供给 AI 让其基于这些信息修复,此时它给的指引会更正确且详细。
    • 如有可能,找一位老师傅随时提供支援。

需要注意的是,从去年三月 GPT4 发布会上一个由手绘草图直接生成网站的 demo 惊艳众人开始,很多人认为程序员工种已进入倒计时,但现实依旧骨感。真正的应用有复杂的特殊需求,代码量也会超出 AI 单次吞吐量,AI 无法直接搞定。对于纯小白,如果需求远比 AI 直出的内容复杂,无法一次性直出,那就需要耐下性子,在 AI 的帮助下一步一步来,并在这个过程中学会一点点编程。

Content generated by AI large model, please carefully verify (powered by aily)

References

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

推荐你从一个最最基础的小任务开始让AI先帮你按照best practice写一个say hello的示例程序,并解释每个文件的作用及程序运行的逻辑。这样,你可以通过最基础的绝对不会出错的小任务,来学会必备的调试技能。“我在学习写chrome插件。请选择最适合小白上手的技术栈,按照best practice为我生成一个简单的示范项目,但要包含尽可能全面的典型文件和功能。请为我讲解每个文件的作用和程序运行的逻辑。”此处要求AI按照best practice来写非常重要:文件一开始就有良好的组织,后续功能复杂了才不会乱套。还有一个偷懒小妙招:如果你用的是o1-mini,你可以在prompt最后添加这句:“请生成create.sh脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果windows机器则是create.cmd)足够勤勉的的o1-mini会为你生成一段超级长的代码,并给出提示,你只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。[heading2][heading1]2明确项目需求[content]你可以通过和AI的对话,来逐步明确项目需求。(如果你是训练有素的产品经理,可以忽略这一步)“我想要开发一个XXX。你能否像一个高级别的还懂技术的产品经理指导初级产品经理那样,向我提问,帮我梳理清产品功能,尤其要注意可能会涉及到技术方案选择的关键点。请一问一答,帮我由全局到细节逐步梳理。不要一口气问我太多问题。”来来回回的对话后,你可以让AI帮助你梳理出产品需求文档。这样的文档会包含影响技术方案选择的细节,比直接给AI一段口头的需求描述要准确地多。在后续开发的时候每次新起一个聊天就把文档发给AI并告知你现在在做第几点功能,会非常方便。[heading2]

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

从去年三月GPT4发布会上一个由手绘草图直接生成网站的demo惊艳众人开始,很多人就认为程序员工种已进入倒计时。最近cursor和o1的出现,更是让非技术同学们热切期盼:是不是真的能再也不“就差一个程序员”了呀!很遗憾,现实依旧骨感。demo还停留在贪吃蛇,太小巧也太普通。真正的应用会有复杂得多的特殊需求,代码量也会超出AI单次吞吐量,AI根本无法直接搞定。(o1?o1的能力确实强了很多,但其实还是不够。后面找机会另写文章详解吧。)如果你请教号称“我不懂编程但靠XX开发了XXX”的技术小白该如何开始,多半会得知他们多少还是懂一些css或python。而纯小白,一开始通过cursor里的对话创建好起始文件后,往往会无从下手——到底要在哪里敲什么字符,才能触发一连串美妙的tab让AI开始自动工作?对于纯小白来说,如果你的需求远比AI直出的内容复杂,无法一次性直出。那就耐下性子,在AI的帮助下一步一步来,并在这个过程中学会一点点编程。[heading2]

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

接下来就是真正的实践了。按照项目规划,学习一个POC,将其应用到大项目中;再学一个POC,再运用……当遇到错误的时候,复制错误信息,复制相关的代码,扔给AI让它找错误并修复。如果用可以识图的claude或GPT4o,截图+错误信息+代码三件套会非常好用。听上去简单,但其实坑非常非常多。例如开发chrome插件,现在应该开发manifest v3的版本(v2很快就不再支持了),但即便和AI反复强调要用v3里的功能,AI还是有可能会给你v2的代码,并且在出错后给出的修复也还是混杂了v2的方案。没办法,谁让它就是根据概率来的呢。这种时候,更有效的方式是:找文档(你可以让GPT给你文档链接,或者问perplexity),或者去stackoverflow上找答案(注意回答和评论的日期)。然后,把文档或找到的答案提供给AI,让它基于这些信息再来帮你修复。这时候,它给的指引会是正确的、且比stackoverflow的详细很多。当然在这一步,如果有可能,你还是找一个老师傅随时为你提供支援。[heading2]

Others are asking
如何用AI搭建个人知识库
以下是用 AI 搭建个人知识库的方法: 首先,要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入(投喂)定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识往往不够。为解决此问题,OpenAI 提供了 embedding API 解决方案。 embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。比如,向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 具体操作时,可将大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,并在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 例如,有一篇万字长文,拆分成多个 Chrunks 包含不同内容。如果提问是“此文作者是谁?”,可以直观地看出与问题关联度最高的文本块,通过比较 embeddings 向量也能得到结论。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 此外,还有案例展示了如何在 AI 时代把碎片化信息内化为自己的知识/智慧。比如在读书时看到有触动的文本,将其整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。基于笔记中提到的 AI 对人的赋能模式,展开深度实践,生成自己的观点和决策,并打造成体系化的内容产品,实现价值。通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“自己的智慧”。
2025-02-28
怎样给AI投喂小说
给 AI 投喂小说可以参考以下步骤: 1. 首先使用 code interpreter,将小说原文喂给它并写入到 dataframe 里,全部喂完后保存成 excel 文件备用。 2. 让 GPT 读取该文件并给出反馈。AI 会从情节合理与连贯性角度给出意见。 3. 进行细节修改,反复尝试后可能会发现某些结构化 prompt 效果更好,修改的成品有部分可直接采纳。每改一段,AI 会把修改后的内容写入内存并读取新的一段。 4. 一轮修改完成后,可让 AI 再修订一轮。若重复次数过多,可先合并段落。这一轮修改可能更强调字词和标点。 5. 还可以把相关写作课程的内容贴给 AI 让其总结,并依照总结的方法修订小说。 需要注意的是,在修改过程中,对于 GPT 改得不好的地方进行简单纠正。同时,由于 GPT 不稳定,为避免白忙活,应随时保存备份。
2025-02-28
我想知道AI如何提高办公效率
以下是 AI 提高办公效率的一些方式: 1. 在日常活动中,如交通监测系统能使通勤更顺畅,银行账户欺诈检测等方面,AI 能自动处理部分工作,提高效率。 2. 在游戏行业,从前期制作到后期迭代,大模型不仅能降低成本,还能打造创新玩法,提供更好的游戏体验。例如网易的《逆水寒》,将 AIGC 应用于美术开发、NPC 与玩家的交互,还内嵌了“AI 作词机”。 3. 在人力资源管理领域,AI 应用于招聘、员工绩效评估、培训与发展等环节,显著提高工作效率。 4. 在全行业中,基础办公如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人等,从单个任务到角色再到角色间协同,都能显著提高工作效率。 5. 在信息检索和处理方面,如 You.com 等多种领先的 AI 产品,能帮助我们更高效地获取信息,提升工作效率和决策质量。
2025-02-28
写论文数据最真实的ai是哪个?
在论文写作领域,AI 技术的应用发展迅速,能在多个方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,这些工具只是辅助,使用时要结合自身写作风格和需求,选择最合适的,且内容由 AI 大模型生成,请仔细甄别。但目前没有哪个 AI 能保证提供的数据绝对真实,仍需您对数据进行仔细核实和评估。
2025-02-28
作为互联网公司的IT,如何用AI来优化或升级自己的工作
对于互联网公司的 IT 人员,利用 AI 优化或升级工作可以从以下几个方面入手: 1. 明确自身工作目标和想法:AI 是工具,能将能力放大,帮助更好更快地实现想法。重要的是思考自己真正想为这个世界做些什么,并着手尝试通过 AI 来实现。 2. 借鉴他人的 AI 工作流: 起床时,让 AI 为自己排 TODO 优先级,做私董会的脑暴。 工作中有阳光会撒娇/卖萌的傲娇 AI 小助理加油。 重点事项如内容创作,可拆成 bot 团队组,包括选题、标题、框架、扩写等,并让两个 AIbot 互相改。 优化 bot,如内容选题 bot、短视频脚本 bot、数据分析 bot 等,并将相关知识库和 Prompt 资产放入飞书的知识库和多维表单中维护。 准备备选的生产力 AI 工具库。 未来可将整个公司业务搬入飞书,外接 MJ、ChatBot 分身等。 3. 关注 AI 发展趋势:目前 AI 在一些具体任务上已超过多数人类,但在涉及推理和自主学习任务方面还有差距,通用人工智能的定义存在争议,其发展带来了技术、伦理、安全和哲学等方面的思考。 需要注意的是,AI 终究会发展到每个人触手可及的程度,对于大部分人来说,并不需要特别关注 AI 技术本身,而应专注于自身的工作需求和目标。
2025-02-28
用AI做数据分析有什么好办法
用 AI 做数据分析的好办法包括以下几个方面: 1. 提供大模型可访问的数据源或上传数据表格,并通过提示词明确需要分析的维度和结果输出格式。观察生成结果,迭代优化提示词,最终导出满意结果。 2. 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 3. 针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化。 4. 给 AI 提供参考和学习内容,包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。 5. 在 Prompt 中使用专业领域术语引导,如法律术语,使 AI 更精准地提供信息。 6. 对于分析结果,要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确。 在实际操作中,例如在 SQL 分析中,用户描述分析内容,后台连接数据库,让 AI 输出并校验 SELECT 类型的 SQL 语句,执行后将数据传给 GPT 分析,最后返回前端页面渲染图表和结论。个性化分析中,用户上传文件并描述辅助,前端解析后传给 GPT 处理,后续步骤与前者一致。
2025-02-28
我想时刻关注Deepseek目前在电商行业应用落地的场景的信息及对应的应用APP、小程序等,可以通过什么渠道第一时间获取
目前关于 Deepseek 在电商行业应用落地的场景信息以及对应的应用 APP、小程序等,您可以通过以下渠道第一时间获取: 1. 关注 Deepseek 官方网站的动态发布和通知。 2. 订阅 Deepseek 官方的社交媒体账号,如微信公众号、微博等,获取最新消息。 3. 加入相关的电商行业论坛或社区,与其他从业者交流,获取相关信息。 4. 关注电商行业的权威媒体和资讯平台,可能会有相关报道。
2025-02-26
文生图的app
以下是一些文生图的相关信息: 大模型工具推荐:chatGPT 4.0、kimichat、智谱清言 4。 国内部分模型可以文生图,如智谱和文心。 在 Stable Diffusion 中获取大佬咒语的方法: 将照片导入,右边会自动弹出照片的信息,包括正面关键词、负面关键词等,可复制这些信息到“文生图”页面的关键词文本框中,点击生成按钮下的第一个小按钮,SD 会自动分配信息。 若导入照片后右边无信息,可用“标签器(Tagger)”生成照片的关键词。 Stability AI 推出基于 Discord 的媒体生成和编辑工具,文生图使用步骤: 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 进入 ARTISAN 频道,任意选择一个频道。 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。输入/dream 提示词,可选参数有五类,包括 prompt(必填项)、negative_prompt(选填项)、seed(选填项)、aspect(选填项)、model(选填项)、Images(选填项)。完成后选择其中一张。
2025-02-26
我是0基础代码小白,我希望快速编写一款APP,满足我所需要的要求,我用deepseek生产app开发者文档,然后用bolt.new工具开发,开发到一半,发现要收费,给我中断了,我该怎么办
对于您这种 0 基础代码小白在开发 APP 过程中遇到收费中断的情况,以下是一些建议: 1. 重新评估您的需求和能力:像案例中的白九龄一样,思考您的想法是否过于复杂,是否可以先从简单的插件开发入手,降低开发难度。 2. 学习基础知识:包括代码环境安装、终端操作等,通过基础实践教程资料来弥补知识短板。 3. 借鉴他人成功经验:仔细研究别人的项目,按照成功的案例原封不动地去实现,从中领悟开发的要点。 4. 清晰描述需求:在开发前与工具充分沟通,明确需求和实现步骤,避免盲目开发。 5. 寻找免费替代工具:既然当前使用的工具收费中断,您可以寻找其他类似的免费工具来继续您的开发工作。 6. 做好项目记录:让工具帮忙写一个 README 文档,记录项目进展、下一步计划以及如何开启和关闭项目,方便后续跟进。
2025-02-23
能够帮助大学老师提高工作效率的AI工具有哪些?请为我推荐10个APP
以下为您推荐 10 个能够帮助大学老师提高工作效率的 AI 工具 APP: 1. WPS 文档翻译功能:这是 WPS 的一项功能,利用自然语言处理技术,可快速翻译办公文档,提高工作效率。 2. 美丽修行 APP:通过数据分析和自然语言处理技术,根据用户肤质推荐适合的美容护肤产品。 3. 360 儿童手表:利用图像识别和机器学习技术,实现定位、通话、安全区域设置等功能,保障儿童安全。 4. 汽车之家 APP:借助数据分析和机器学习技术,根据用户汽车型号、行驶里程等信息提醒车主及时进行汽车保养。 5. 豆果美食 APP:运用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱。 6. 沪江开心词场:采用自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案。 7. 爱奇艺智能推荐:利用数据分析和机器学习技术,根据用户喜好推荐电影。 8. WPS Office:借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程。 9. Speak:是一个由 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 10. Quazel:提供类似的语言学习帮助。 此外,还有 Lingostar、Photomath、Mathly、PeopleAI、Historical Figures、Grammarly、Orchard、Lex、Tome、Beautiful.ai 等工具在不同方面为学习和工作提供支持。
2025-02-21
生成App的logo的AI工具哪个好
以下是一些生成 App logo 的较好的 AI 工具: 1. Looka:在线 Logo 设计平台,利用 AI 理解用户品牌信息和偏好,生成多种设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,能根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。使用这些工具时,通常可根据品牌理念和视觉偏好,通过简单交互获得设计方案,并进一步定制优化至满意。
2025-02-20
AI如何接入APP
以下是将 AI 接入 APP(以微信为例)的详细步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已接通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的“中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 再往后就是添加插件,讲解得非常清晰,完成上述步骤后,相信您也能搞定插件的安装。点击文章,会直接定位到您该操作的那一步。 6. 若认为上述步骤简单,尚有余力,可以继续看。 开始部署(这里继续): 1. 复制代码时注意复制全,每次只需要粘贴一行,然后点击一次回车。 第一步:cd /root || exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(若有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可复制网址,手动下载到电脑上,然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后,刷新一下,重新进入终端,若最左侧出现了(AI)的字符,则恭喜您。 配置环境: 1. 打开刚才保存的“外网面板地址”。 2. 输入账号密码。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装 Nginx 1.22 和 MySQL 5.7 即可,其他的取消勾选。 5. 点击“其他菜单”,出现相应样式,会让您关联,点击【关闭】,直接操作第 4 步【开始部署】。绿色字体的三个步骤可以不做。(这里的步骤,用不到,可以不关联)若想关联,可以点击【点击查看】按钮,跳转进入腾讯云。 6. 点击“API 密匙关联”点击“新建秘钥”。复制这两个,一定保存好。 7. 点击确定后,列表上会有一个 APPID,这三个串码,依次对应粘贴到刚才的登录窗口里即可。
2025-02-18
请介绍Coze开发平台中,扣子API有什么功能?怎么用它?
在 Coze 开发平台中,扣子 API 具有以下功能和使用方法: 获取 accessToken: 在 coze 界面右侧的扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats 。 添加令牌,设置 token 的名称和过期时间(为安全起见,最多 1 个月)。 设置权限,可选择会话管理和对话,拿不准可全部选择,完成后点击“确定”按钮。 最后一定要点击按钮复制下拉获取令牌,此令牌只会出现一次。 获取 botid: 从“工作空间”打开一个 bot,点击商店按钮,查看地址栏中“bot/”之后的数字。 发布为 bot api: 注意在前端使用 bot 必须发布成为 API,点击发布,选择 API,等待审核通过。 此外,智能体沟通页面在 Zion 中采用 OAuth 鉴权机制,准备工作包括: 获取 Coze bot 应用鉴权密钥:在 Coze 主页点击左下方扣子 API,选择 Oauth 授权模式,添加新令牌并配置基本信息,创建 Key 过程中会生成公钥和私钥(私钥需单独下载保存),最后勾选全部权限。 获取 Bot ID:进入自己的智能体在地址栏内复制“bot/”之后的数字,且 bot 发布时要选择 Agent as API。 在 Coze 上发布 bot:发布时记得勾选 API 及 WEB SDK,Coze bot 发布有审核周期(1 30 分钟),需确认发布成功。 在扣子中手搓插件方面: Body:用于传递请求主体部分,GET 方法中通常不使用来传递参数。 Path:定义请求路径部分,GET 方法中可编码为 URL 一部分传递参数。 Query:定义请求查询部分,是 GET 方法中常用的参数传递方式。 Header:定义 HTTP 请求头信息部分,GET 方法中通常不用于传递参数。 配置输出参数:填对信息后可点击自动解析,若成功会显示并填好输出参数,然后保存并继续,建议填写参数描述。 调试与校验:测试工具能否正常运行,运行后查看输出结果,点击 Response 可看到解析后的参数。
2025-02-27
扣子的智能体发布时,可以不公开发布在扣子商店,但可以被其他人访问吗
扣子的智能体发布时,必须公开发布在扣子商店才能被其他人访问。根据相关活动规则,参赛选手需在规定时间(如 2024/11/15 23:59 之前)将智能体上架到扣子商店,发布成功后需等待审核,确认发布好后提交链接参赛。优质的智能体将作为模板上架到扣子官方网站的模版库中供其他开发者体验、使用。
2025-02-26
coze开发教程
以下是关于 Coze 开发的相关教程: 1. Coze AI 应用开发教学: 背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 2. Coze 使用教程: 概述:字节的官方解释为 Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。个人认为 Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可以正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为如下几个区块,包括提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。 3. Coze 应用技巧: 操作步骤: 创建一个 Coze。 在“用户界面”拖入一个 markdown 组件。 在 markdown 中写入 html(对于了解前端页面的同学来说可能不难理解,用 html 写一个音乐播放器。不懂前端、不会写前端代码可问 AI,习惯使用智谱清言,大家可以选择自己习惯的 AI 工具)。 调整代码获取在线音乐:将 markdown 自带的内容全部删除,将生成的代码写入进 markdown 组件的内容中。此时的播放器还无法正常播放音乐,需要找一个在线音乐播放平台,获取到歌曲的 url,再将 url 复制进上面的代码。网上很多在线音乐的网站,随便找一个,打开浏览器的控制台(按 F12)找到 network(网络),选择播放的请求,将带有.mp3 格式的 url 复制出来。找到上面代码中的<source src=\"song.mp3\"type=\"audio/mpeg\">部分,将 song.mp3 换成复制的音乐地址。刷新开发页面,播放器即可使用。
2025-02-25
基于大模型的RAG应用开发与优化
基于大模型的 RAG 应用开发与优化具有以下特点: 优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数,还能使用自定义组件,只要遵循 LangChain 的接口规范。 2. 可扩展性:能利用 LangChain 的云服务部署和运行应用,无需担心资源和性能限制,也能使用分布式计算功能加速应用。 3. 可视化:通过 LangSmith 可视化工作流程,查看输入输出及组件性能状态,还能用于调试和优化,发现解决问题和瓶颈。 应用场景: 1. 专业问答:构建医疗、法律或金融等专业领域的问答应用,从专业数据源检索信息帮助大模型回答问题。 2. 文本摘要:构建新闻或论文等的摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要。 3. 文本生成:构建诗歌、故事等生成应用,从不同数据源检索灵感帮助大模型生成更有趣和创意的文本。 调优实践: 1. 更换大模型:从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工重命名文件对结果提升不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前效果虽有提升,但仍未达到可用水平,后续将尝试其他调优策略。
2025-02-25
coze智能体开发
以下是关于 Coze 智能体开发的相关内容: 1. 创建 Bot:打开 Coze 官网 https://www.coze.cn/home 。 2. 图像工作流:创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类,Coze 的图像流比 ComfyUI 更普世化且简单易上手。 3. 空间风格化插件:其参数包括 image_url(毛坯房的图片地址)、Strength(提示词强度,即提示词对效果图的影响度)、Style(生成效果的风格,如新中式、日式、美式、欧式、法式等)、user_prompt(用户输入的 Promot 提示词)。 4. 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 5. 开始节点解析:开始节点对应配置三项内容,进行提示词优化。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以出图。 此外,还有以下相关信息: 1. Code AI 应用开发教学:Code AI 应用背景为智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。创建 AI 应用,需学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 2. 搭建工作流驱动的 Agent,简单情况可分为 3 个步骤: 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。
2025-02-23