Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai是什么

Answer

AI 是一种模仿人类思维、能够理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可以将其视为一个黑箱。

从人类文明的传说和古老哲人的智慧中,可以寻找到与 AI 相处的原则。当希望 AI 实现愿望时,要通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径方法以及所需的正确知识。

从其发展历程来看,计算机科学和人工智能之父图灵在 1950 年的论文中提出了“图灵测试”的方法,用于判断机器是否具有智能。如今,像 ChatGPT 这样的 AI 产品在交流体验上已经非常接近与正常人类的交流,尽管学术界对其是否通过图灵测试仍存在争议,但很多人认为目前的 AI 产品已经达到了较高的智能水平。

简单来说,现在的 AI(主要是生成式 AI 技术)可以接受和理解各种不同的输入和数据,并生成包括文字、声音、图像、视频、3D 模型等多种多样的内容。可以把 AI 当人看。

Content generated by AI large model, please carefully verify (powered by aily)

References

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“AI”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

一个希望有点意思的AI分享(一)

咱们会通过一些具体的例子,让大家对AI是什么有个印象;然后会尝试介绍一些AI的技术原理,希望你能体会到AI技术的美妙和深刻;接着我们会解释如何理解”AI能做什么“这个问题;再者我们会介绍一些具体的工具案例和资料;最后我们会简单聊一些AI的未来发展以及影响。首先来看AI是什么这个问题。我们从它的父亲说起。有一部电影叫做《模仿游戏》,它讲述的就是计算机科学和人工智能之父,图灵的故事。他在二战期间构建的机器,或者说计算机的原型,破译了德军的密码。他预见了计算机的发展,并开始考虑一个很深刻的问题:“如何判断一台机器具有智能?”在他的1950年的论文中,他提出了一种被称为“图灵测试”的方法。测试中,一位人类提问者通过文字通道向两个回应者(一个是计算机,另一个是人类)连续提问。在相当长的时间内,如果提问者无法可靠地区分哪个回应者是计算机,哪个是人类,那么可以认为这台计算机具备了智能。这是一个非常经典和深刻的方法,要实现这一点其实很困难。下面是2024年春OpenAI公司发布新一代ChatGPT聊天机器人(GPT4o)产品时的发布会视频,你可以选择从9分钟开始直接看用户和ChatGPT交流的现场展示部分。如果你之前对AI没有那么关注,相信你会感到震惊。这个体验已经非常接近和正常人类的交流。事实上如果考虑到知识丰富和情绪稳定,它应该比大多数人类更适合交流;p那么,请你想象一下,如果你是提问者,你觉得ChatGPT可以跨越图灵测试吗?虽然学术界依然存在着很多争议,但是确实有很多人认为目前的AI产品已经可以通过图灵测试。事实上,这可能比绝大多数人认为的到来得早得多。也有人说,我们需要新的标准来判定AI真正拥有智慧,比如,它是否拥有自主意识?那自主意识又是什么以及如何测定呢?这是人类面临的新问题。

一个希望有点意思的AI分享(一)

通过上面的这些例子,我们可以了解,现在的AI(准确的说,目前介绍的主要是一类叫做生成式AI的技术,小名叫大模型)可以接受和理解各种不同的输入和数据,同时可以生成包括文字、声音、图像、视频、3D模型等等多种多样的内容。回到我们最开始的章节标题,AI是什么。简单来说,就是,把AI当人看。事实上,在后面章节的讲述中,你会更加深刻的认识和赞同这一点。[heading1]未完待续……

Others are asking
AIGC开课准备
以下是关于 AIGC 开课准备的相关信息: 北京市新英才学校的师生已在利用生成式 AI 开展多种活动,如跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师借助 AIGC 备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中,她曾在美国范德堡大学读研究生,在创新学校做过老师,还在腾讯做过教育产品经理。 魏一然表示学生对 AIGC 的认知和理解差异很大,部分学生几乎一无所知,而小部分学生比老师还懂。学校领导层重视人工智能教育的发展,鼓励老师探索新方式和工具,目前还在探索初级阶段,但已有一定经验和成果。 关于 AI 版权分享课: 直播准备工作包括共享屏幕调试、微信直播与飞书直播的设置、人员操作界面的准备等。 人员任务安排方面,谢家炜负责投屏分享、刘洋协调沟通、咯咯哒操作相关界面等。 探讨了 AI 版权问题,涉及声音权、IP 形象版权等,如用他人声音做二创并发布到公共平台可能侵权,AI 设计的 IP 形象版权认定及商标申请等。 会收集观众在直播平台提出的问题,后续统一解答。 介绍了版权基础知识,包括版权是知识产权的一部分,商标和专利的相关内容。 对比了传统作品与 AI 生成作品在版权方面的情况。 说明了版权基本常识,如版权无需向国家申请注册,作品完成即有版权,版权登记是法律证据,国外作品也有版权,版权本质是作者对作品传播的控制权。 指出了 AI 内容生成的侵权情形,如不知情时模型厂商用他人版权作品作训练数据,用户可能无辜躺枪,故意生成与他人风格相似作品等可能构成侵权。
2025-02-26
零代码基础的业务小白如何搭建自己的AI自动化工作流,方便提升效率
对于零代码基础的业务小白搭建自己的 AI 自动化工作流以提升效率,您可以参考以下步骤: 1. 利用 Comfyui 界面: 打开 Comfyui 界面后,右键点击,找到 Comfyui LLM party 的目录。 您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 启动 ollama: 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 3. 对于图片相关的工作流,比如 0 基础手搓 AI 拍立得: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 为了简化流程,可以选择 Coze 平台实现零代码版本的工作流。搭建流程时,主要关注以下几个步骤: 上传图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 插件封装:将图片理解大模型和图片 OCR 封装为工作流插件,实现便捷调用,如果市场里面有可以直接使用。 4. Coze 的工作流是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。具体来说: 工作流由多个节点组成,包括 Start 节点和 End 节点。用户可以在这些节点之间添加各种功能模块,构建出所需的业务流程。 工作流支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等。用户可以根据需求灵活组合这些模块。 工作流的创建和编辑都可以通过可视化的拖拽界面完成,无需编写代码。这大大降低了工作流搭建的门槛。 创建好的工作流可以直接集成到 Coze 的聊天机器人中使用,实现复杂的业务逻辑。 总的来说,Coze 的工作流为用户提供了一种可视化、低代码的方式,来快速搭建满足业务需求的 AI 应用和服务。这极大地降低了开发门槛,让更多人可以利用 AI 技术来提升工作效率。但请注意,上述内容由 AI 大模型生成,请仔细甄别。
2025-02-26
我想要能够生成音乐的ai工具
以下为您推荐一些能够生成音乐的 AI 工具: 1. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。网址:https://www.udio.com/ 2. Suno AI:是一款革命性的人工智能音乐生成工具,它通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。网址:https://suno.com/ 3. Lemonaide Music:与 DAW 集成的生成音乐工具,100%免版权费。网址:https://www.lemonaide.ai/ 4. tuney.io:为创意媒体提供的伦理音乐 AI。网址:https://csteinmetz1.github.io/aiaudiostartups/tuney.io 5. KORUS AI:AI 音乐创作平台和探索声音宇宙的个人音乐制作人。网址:https://play.korus.co/ 6. TRINITI:通过音乐赋予您新的创作和表达方式。网址:https://triniti.plus/ 7. voice swap:使用 AI 改变您的歌唱声音。网址:https://www.voiceswap.ai/ 8. mix audio:为您的创造力和生产力提供 AI 音乐。网址:https://mix.audio/ 9. Audiogen:使用 AI 生成声音、音效、音乐、样本、氛围等。网址:https://www.audiogen.co/ 10. Wavtool:带有 AI 助手并支持本地 VST 插件的网页 DAW。网址:https://wavtool.com/ 11. Wavacity:Audacity®音频编辑器的网页版。网址:https://wavacity.com/ 内容由 AI 大模型生成,请仔细甄别。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI模型私有化部署
AI 模型私有化部署具有以下特点和情况: 挑战方面: 在许多中小型行业,如金融、医疗和法律行业,由于对数据私密性要求极高,客户隐私敏感度高,往往需要私有化部署场景,这大大增加了企业培训的难度。 访问 GPT 有门槛,国企类、体制类的合作伙伴可能受限,需要寻找更易于接入的国产模型作为替代方案,如智谱等。 工程化落地难,企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。例如某金融企业希望使用大模型构建 AI 智能问答机器人并私有化部署,但因自身规模不大且无数字化系统,实际落地成本可能不比传统人力成本节省更多。 经验分享方面: 构建企业知识库是常见需求,一种普遍解决方案是结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可进行模型的 Finetuning(微调)以优化性能。 基础模型提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。通过 Finetuning 可增强基础模型的知识库、调整输出和教授更复杂指令,提高模型整体性能和效率。 360 愿意为有能力的企业赠送免费的私有化部署通用大模型,其可解决隐私泄露和数据流失问题,满足科普和一些通用需求,如办公等。同时提供 360AI 办公的会员服务,围绕办公营销需求做了很多工具,并将其场景化。
2025-02-26
如何提高AI回答准确
以下是一些提高 AI 回答准确性的方法: 1. 明确角色和任务:赋予 AI 特定的角色,如专注于民商事法律领域的律师,以利用其数据处理和模式识别能力。 2. 清晰表述任务目标:例如在法律建议中,明确概括核心观点和注意事项的数量。 3. 提供完整的上下文和背景信息:讲清楚背景和目的,如律师处理交通事故案件时,提供详细的案件事实和法规。 4. 提出具体明确的需求和细节性信息:使用清晰、具体的语言,避免模糊表述。 5. 设定限制和不需要的内容:明确告知 AI 哪些内容不应包含。 6. 遵循特定的回答语言风格和形式:例如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织回答。 7. 了解 AI 的工作原理和限制:有助于更好地设计问题。 8. 拆解工作流程:将复杂任务分解为更小、更具体的环节,使 AI 执行更精确。 在生成回答的过程中,系统基于整合好的上下文信息来构建最终的回答,具体步骤包括: 1. 上下文向量化:将整合后的上下文信息转化为向量,通常通过预训练的语言模型进行,如 BERT 或 GPT,以捕捉语义信息。 2. 生成模型激活:使用基于 Transformer 的生成模型(如 GPT)接收向量化的上下文,利用自注意力机制理解关系和信息。 3. 逐词生成回答:模型逐词构建回答,考虑之前已生成的词和整个上下文的语义,迭代进行直至回答构建完成。 4. 优化语言流畅性和准确性:确保生成的文本语法正确、逻辑连贯,与用户问题紧密相关。 5. 回答评估与调整:完成初步生成后,对回答进行评估,根据需要微调或重新生成。 6. 输出回答:最终将生成的答案呈现给用户。
2025-02-26