Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

想从0开始学习ai,有什么资料可参考

Answer

以下是从 0 开始学习 AI 的参考资料和学习路径:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

此外,如果您想学习关于 AI 生成 CAD 图相关的资料,可以参考以下几个方面:

  1. 学术论文:
    • 通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 在 CAD 领域的应用和研究成果。
  2. 专业书籍:
    • 查找与 AI 在 CAD 领域相关的专业书籍,了解其应用和案例。
  3. 在线课程和教程:
    • 参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。
    • 在 YouTube 等视频平台上查找教程和演示视频。
  4. 技术论坛和社区:
    • 加入相关的技术论坛和社区,如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习。
    • 关注 AI 和 CAD 相关的博客和新闻网站,了解最新技术动态和应用案例。
  5. 开源项目和代码库:
    • 探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT-3、AutoGPT 等 AI 模型在 CAD 设计中的应用。
  6. 企业案例研究:
    • 研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解实际项目中的应用和效果。

在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:有没有关于 AI 生成 CAD 图相关的资料

关于AI生成CAD(计算机辅助设计)图的相关资料,您可以参考以下几个方面:1.学术论文:搜索相关的学术论文,了解AI在CAD领域的应用和研究成果。可以通过Google Scholar、IEEE Xplore、ScienceDirect等学术数据库进行搜索。2.专业书籍:查找与AI在CAD领域相关的专业书籍,了解AI在CAD设计中的应用和案例。3.在线课程和教程:参加相关的在线课程,如Coursera、edX、Udacity等平台上的AI和CAD相关课程。查找YouTube等视频平台上的教程和演示视频,了解AI在CAD设计中的应用。4.技术论坛和社区:加入相关的技术论坛和社区,如Stack Overflow、Reddit的r/AI和r/CAD等,与其他专业人士交流和学习。关注AI和CAD相关的博客和新闻网站,了解最新的技术动态和应用案例。5.开源项目和代码库:探索GitHub等开源平台上的AI和CAD相关项目,了解AI在CAD设计中的应用和实现。例如,OpenAI的GPT-3、AutoGPT等AI模型在CAD设计中的应用。6.企业案例研究:研究AI在CAD领域应用的企业案例,了解AI技术在实际项目中的应用和效果。例如,Autodesk、Siemens等公司在AI在CAD设计中的应用。在学习和研究AI生成CAD图的过程中,了解相关的基础知识和技术细节是非常重要的。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握AI在CAD领域的应用和实现。随着AI技术的不断发展,AI在CAD设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

Others are asking
有什么免费开源的数字人AI工具
以下为您推荐一些免费开源的数字人 AI 工具: 1. Aigcpanel: 特点:开源且适合小白用户,具有一键安装包,无需配置环境,简单易用。 功能:能够生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G+3G 语音模型包,启动模型即可。 GitHub 链接: 官网: 2. Heygen: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 点击网址注册后,进入数字人制作,选择 Photo Avatar 上传自己的照片。 上传后效果如图所示,My Avatar 处显示上传的照片。 点开大图后,点击 Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击 Submit,就可以得到一段数字人视频。 3. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 点击上面的网址,点击右上角的 Create vedio。 选择人物形象,可以点击 ADD 添加自己的照片,或者使用 DID 给出的人物形象。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击 Generate vedio 就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 4. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很 AI。 使用方法: 点击上面的网址,注册后获得 120 免费 k 币,这里选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。
2025-02-24
AI变清晰
以下是关于让 AI 变清晰的相关内容: 对于老照片,可将其放入后期处理中,使用 GFPGAN 算法使人脸变清晰。具体可参考文章——。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免对原图产生干扰。 常见的 AI 画质增强工具包括:Magnific(https://magnific.ai/)、ClipDrop(https://clipdrop.co/imageupscaler)、Image Upscaler(https://imageupscaler.com/)、Krea(https://www.krea.ai/)。更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。这些工具具有不同特点和功能,可根据需求选择。
2025-02-24
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
帮我找一些可以无损放大图片的ai 产品
以下是一些可以无损放大图片的 AI 产品: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 此外,以下是图片增强方面的 AI 产品排名数据: 4 月访问量(万 Visit): 1. Cutout pro 图片增强 1608 相对 3 月变化 0.023 2. Upscale media 图片增强 432 相对 3 月变化 0.073 3. ZMO AI 图片增强 338 相对 3 月变化 0.161 4. Neural.love Art 图片增强 283 相对 3 月变化 0.072 5. Topaz Photo AI 图片增强 247 相对 3 月变化 0.047 6. VanceAI 图片增强 247 相对 3 月变化 0.078 7. bigjpgAI 图片无损放大 图片增强 203 相对 3 月变化 0.06 8. Img Upscaler 图片增强 203 相对 3 月变化 0.042 9. Let's Enhance 图片增强 167 相对 3 月变化 0.046 10. Akool 图片增强 122 相对 3 月变化 0.173 6 月访问量(万 Visit): 1. Cutout pro 图片增强 1408 相对 5 月变化 0.082 2. Upscale media 图片增强 433 相对 5 月变化 0.029 3. Neural.love Art 图片增强 253 相对 5 月变化 0.137 4. Img Upscaler 图片增强 244 相对 5 月变化 0.032 5. VanceAI 图片增强 239 相对 5 月变化 0.077 6. ZMO AI 图片增强 221 相对 5 月变化 0.153 7. bigjpgAI 图片无损放大 图片增强 180 相对 5 月变化 0.109 8. Topaz Photo AI/Topaz Video AI 图片增强 170 相对 5 月变化 0.224 9. Let's Enhance 图片增强 150 相对 5 月变化 0.102 10. Akool 图片增强 142 相对 5 月变化 0.193
2025-02-24
我要学习AIGC ,零基础,刚接触,请给我制定一个系统的学习清单
以下是为您制定的零基础学习 AIGC 的系统学习清单: 1. 阅读彭博社对谷歌 CEO Sundar Pichai 的访谈,了解关于搜索未来、Gemini 构建、与微软和 OpenAI 竞争、美中在 AI 方面的竞争以及谷歌文化挑战等内容,同时关注 Google 对 AI 技术未来包括 AGI 的承诺和看法。 2. 查看 Elicit 发布的机器学习必读清单,系统学习机器学习基础、Transformer 与基础模型、训练与微调、推理与运行策略等方面,从基础概念入门到深度强化学习和反向传播等进阶内容,深入了解 Transformer 架构以及训练和精调语言模型的方法与策略,分析大语言模型如何处理复杂推理和解决问题的任务。 3. 学习提示工程基础,掌握三种高级提示工程技巧,包括思维链(CoT)提示、思维树(ToT)提示和思维图(GoT)提示。 4. 观看【AI 学习笔记】小白如何理解技术原理与建立框架的相关内容,了解什么是 AI 大模型及其原理,包括生成式 AI 生成的内容(AIGC)、相关技术名词(如 AI、机器学习、监督学习、无监督学习、强化学习、深度学习、生成式 AI、LLM 等)以及技术里程碑(如谷歌团队发表的《Attention is All You Need》论文提出的 Transformer 模型)。
2025-02-24
适合做人文社科类学术研究的AI助手或工具有哪些?
以下是一些适合做人文社科类学术研究的 AI 助手或工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,如果您有医学课题需要修改意见,以下工具可供选择: 1. Scite.ai:创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,增强对科学文献的洞察。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念、摘要等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 常见的文章润色工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前的头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 在使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,请注意这些内容由 AI 大模型生成,请仔细甄别。
2025-02-24
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
做chatbi有什么开源项目可以参考
以下是一些可参考的做 chatbot 的开源项目: Inhai:Agentic Workflow:其中介绍了大模型利用「网页搜索」工具的典型例子,还包括 Agent 自行规划任务执行的工作流路径以及多 Agent 协作的内容。 ChatDev:吴恩达通过此开源项目举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。 ChatMLX:多语言支持,兼容多种模型,具有高性能与隐私保障,适用于注重隐私的对话应用开发者。链接:https://github.com/maiqingqiang/ChatMLX
2025-02-17
图生视频指令参考
以下是关于图生视频的指令参考: Morphstudio 中: 文生视频:提示词指令为“/video”。举例:“/video 你好世界比例 16:9动作幅度为 5镜头拉近每秒 30 帧秒数为 5 秒” 图生视频:提示词指令为“/animate一只在行走的猫比例 16:9动作幅度为 5相机向上移动每秒 30 帧” 参数说明: “ar”(只针对 MorphVideo 机器人):用来设置视频的画面比例,如 16:9、4:3、1:1、3:4、9:16 等。 “motion”:调整视频中的运动强度,数值越低运动越微妙,数值越高运动越夸张。 “camera”:控制摄像头移动,如 Zoom(镜头拉近/拉远)、Pan(摄像机向上/向下/向左/向右移动)、Rotate(相机顺时针旋转或逆时针旋转)、Static(相机静态)。 “fps”:视频的帧率,默认每秒 24 帧。 “s”(只针对 MorphVideo 机器人):设置视频的时长,单位是秒。 此外,还有其他案例: Vidu 大家测试中,有“公子在宣武门前站着说话,气场强大,头发和衣衫随风飘动,气体流动,手指向远方”“小孩子向画面右侧奔跑,后面腾起一路尘土”“公子扔出手中球体法器,法器升空爆出万丈金光,公子惊奇的看着”等提示词生成的视频效果。 桂大羊的教程中,通过性格特征和时代背景描绘人物提示词、上传角色参考图,根据剧本创作提取场景提示词,采用文生图模式并进行垫图操作,确立台词、剧本、风格、人物形象、画面场景后,使用即梦进行图生视频,上传图片至视频生成模块,用简单提示词描绘动态内容,可生成 3 秒钟视频,运镜类型可根据剧本镜头描绘设置,以随机运镜为主,生成速度可选择慢速。
2025-02-13
基于参考图片人物形象生成指定迪士尼风格的图片
以下是关于基于参考图片人物形象生成指定迪士尼风格图片的相关内容: 在 Midjourney 中,生成指定迪士尼风格的图片可以通过以下方式: 1. 角色参考(cref):cref 的功能是保持图像角色的一致性。使用方法是在提示后添加 cref,并紧接着指向人物参考图像的 URL。您可以使用 cw 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):sref 的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 sref,并紧接着指向风格参考图像的 URL。您可以使用 sw 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果想引用一张图,但只是把它作为新图的一部分,可以使用 sref 或 cref,并通过调整 sw 或 cw 的值来控制引用图像的影响程度。 生成一张 Disney 风格的头像的具体步骤如下: 1. 选一张比较满意的图片,在 Discord 社区的 Midjourney 服务器聊天栏点击“+”,然后点击上传文件,选取图片,然后在聊天框发送(记得点击回车或发送按钮)。 2. 图片会上传到服务器并生成一张唯一的链接,点击图片,然后点击在浏览器中打开,然后可以看到浏览器上方有一个链接,复制下来。 3. 使用这个链接加 prompt 提示词来发送给 Midjourney,Midjourney 会根据需求生成特定的图片,这就是 Midjourney 的以图绘图。 此外,在生成 3D 效果图时,如生成可爱的拟人小鹿角色,可以在即梦图片生成界面中导入参考图,参考选项为参考轮廓边缘,生图模型选择 图片 2.0,输入包含角色、细节描述、场景、风格材质等的提示词,生成图片。
2025-02-12
function calling的资料
以下是关于 Function Calling 的相关资料: 函数调用为 AI 系统带来了诸多优势,包括简化用户体验、减少错误发生可能性以及为更高级的自动化开辟道路。例如在处理金融信息时,它能使整个过程更加流畅、准确,并能实现如酒店预订或制定旅行计划等复杂操作。 OpenAI 的 Chat completions API 允许在请求中附带一系列函数描述,使模型能够根据提供的模式生成函数参数,API 会以 JSON 格式返回生成的参数,可用于执行函数调用,函数调用的结果还能在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 对于让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制至关重要且较为复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。将 GPT 与函数调用结合,本地控制返回 JSON 格式,能使 prompt 的定制更简单,AI 的输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。
2025-02-21
deepseek相关的资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代搜索: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-02-14
需要一些ai入门科普资料
以下是为您提供的 AI 入门科普资料: 一、技术原理相关 1. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 2. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。 3. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动得到的结果,可借助 LangChain 等框架简化构建流程。 二、关于未来的想象 1. Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。 2. 在端到端算法的时代,不应继续使用冯诺依曼架构。 3. 在存算一体(在存储单元里做计算)的芯片之上,一定会诞生全新的算法。 个人总结:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门。 此外,安克创新的 CEO 阳萌的一些观点也很有启发,比如之前对安克创新的印象是卖充电宝和安防设备,但看了访谈后会被其认知震撼。
2025-02-12
deepseek 小说的资料在哪一页
以下是关于 DeepSeek 小说的相关资料所在位置: 此外,还有以下智能纪要中的相关内容: ,包括旧模型文学创作弊端与 Deepseek 使用建议等章节。 ,围绕如何用 deepseek 写小说展开。 ,介绍 Deepseek R1 大模型的特点与创作表现。 ,讲解 Deepseek re 提示词写法及相关理论探讨。 ,围绕 Deepseek REE 提示词展开讨论。 ,探讨 AI 辅助下的小说创作及对好文字、文学创作方式。
2025-02-11
deepseek资料
以下是关于 DeepSeek 的相关资料: 2025 年 2 月 6 日的智能纪要中,DP 模型能进行自然语言理解与分析、编程、绘图(如 SVG、MA Max 图表、react 图表等),使用优势是可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转自 Archerman Capital 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 集合·DeepSeek 提示词方法论中,提供了一些相关文章和链接,如南瓜博士的相关文章,以及 DeepSeek 官方提示词和最新文章观点学术报告及业界评论的链接。同时还有 R1 模型的一些使用建议。 DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-08
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 2025 年 2 月 6 日的智能纪要中,分享了 DP 模型的使用,其功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取,介绍了 DeepSeek 的模型、收录内容、提示词使用技巧和好玩的案例等,未来活动预告有明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 非技术人角度的研究总结,主要围绕天才养成记、“填鸭”之困、自学成才、纯强化学习等话题,力求帮助非技术读者深度理解 Deepseek R1,更好开展工作与生活。
2025-02-07
AI学习教程
以下是为新手提供的 AI 学习教程: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-24
帮我设计一套从零开始系统学习AI的路线
以下是为您设计的从零开始系统学习 AI 的路线: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期3个月
以下是为您设计的为期 3 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,例如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 观看优质的 AI 课程,如 Coursera 上的相关课程。 第二个月: 学习 AI 绘画,下载相关软件如 SD 秋叶安装包,并观看教学视频,逐步掌握操作技巧。 加入 AI 学习社区,如 waytoAGI 社区,参考新手指引,获取更多学习资源和交流经验。 第三个月: 深入学习生成式人工智能项目,了解其生命周期和相关技术,如监督学习构建餐厅评价鉴别系统的过程。 尝试亲自进行生成式 AI 代码的编写和运行。 探索 AI 变现的途径,如用 GPT 和 SD 制作图文故事绘本、小说推文等项目。 请注意,学习过程中要不断实践和总结,根据自身情况进行调整和优化。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期6个月
以下是为您设计的为期 6 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 寻找优质的在线课程,例如 Coursera 上的相关课程。 第二个月: 深入学习 AI 的基础知识,包括机器学习、深度学习的基本概念。 实践一些简单的机器学习算法,如线性回归、决策树等。 第三个月: 学习深度学习框架,如 TensorFlow 或 PyTorch。 尝试使用这些框架实现一些简单的深度学习模型,如多层感知机。 第四个月: 探索自然语言处理和计算机视觉等领域的基础知识。 可以通过一些开源项目和数据集进行实践。 第五个月: 深入研究特定的 AI 应用领域,如医疗、金融等。 参与相关的线上讨论和社区,与同行交流经验。 第六个月: 总结所学知识,进行项目实践,将所学应用到实际问题中。 关注最新的 AI 研究动态和行业发展趋势。 在学习过程中,要注重理论与实践相结合,多动手实践,积极参与社区交流,不断提升自己的能力。
2025-02-24
怎么学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-23