Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

dify使用秘诀

Answer

Dify 是一个开源的大模型应用开发平台,具有以下特点和优势:

  1. 理念创新:结合后端即服务和 LLMOps 的理念。
  2. 界面直观:为用户提供直观的界面,能快速构建和部署生产级别的生成式 AI 应用。
  3. 功能强大:具备强大的工作流构建工具,支持广泛的模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。
  4. 智能体支持:允许用户定义 Agent 智能体。
  5. 性能优化:通过 LLMOps 功能对应用程序的性能进行持续监控和优化。
  6. 部署灵活:提供云服务和本地部署选项,满足不同用户需求。
  7. 数据可控:通过开源特性确保对数据的完全控制和快速的产品迭代。
  8. 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。
  9. 适用场景广泛:无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都能提供相应的支持和工具。

Dify 官方手册:https://docs.dify.ai/v/zh-hans

一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG 提示工程(三):迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

Others are asking
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,并通过 LLMOps 功能持续监控和优化应用程序的性能。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速的产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 使用建议:个人研究时推荐单独使用,企业级落地项目推荐多种框架结合,效果更好。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-18
类似dify的工具有哪些
以下是一些类似 Dify 的工具: ElevenLabs 发布了 Dubbing Studio 并获得 8000 万美元的 B 轮融资,Dubbing Studio 可以自动识别视频中的发言者,并能手动或自动调整每句话的语气和翻译。 Poe 的机器人创建者为 Poe 带来新用户能获得高达 50 美元的收入。 HayGen 发布了可以实时对话的数字人产品。 字节发布了 Depth Anything 深度估计模型。 此外,在开源社区中,还有像 fastgpt 等成熟的高质量 AI 编排框架。Dify 是一个开源的大模型应用开发平台,具有强大的工作流构建工具、广泛的模型集成、功能丰富的提示词 IDE 等特点,还允许定义 Agent 智能体并进行性能监控优化,提供云服务和本地部署选项。其官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-02-17
关于dify,有没有推荐的网上教材?
以下是为您推荐的关于 Dify 的网上教材: 1. 在 Dify 的官网,有一篇手把手教您将 Dify 应用接入微信生态的教程,包括创建聊天助手应用、下载 Dify on WeChat 项目、填写配置文件、把基础编排聊天助手接入微信、把工作流编排聊天助手接入微信、把 Agent 应用接入微信等步骤。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 2. 《》,介绍了如何一键部署自己的 Dify 网站,提供了腾讯云一键部署和云服务器 Docker 部署两种方案,用户需要配置模型供应商的信息,成功保存设置后可创建 Agent 进行测试。 3. AIGC Weekly21 中提到:,GooCarlos 开发的 Dify 是一款易于使用的 LLMOps 平台,允许团队基于语言模型(如 GPT4)开发和运营 AI 应用。能在几分钟内创建 AI 驱动的应用程序,将自然语言转换为 SQL,转换编程语言,从文本中汇总关键信息等,适用于多种应用场景。
2025-02-15
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
dify和coze的区别
Dify 和 Coze 都是大模型中间层产品,它们有以下主要区别: 1. 开源性: Dify 是开源的,允许开发者自由访问和修改代码以进行定制,由专业团队和社区共同打造。 Coze 由字节跳动推出,目前没有明确信息表明其是否开源,可能更侧重于提供商业化服务和产品。 2. 功能和定制能力: Dify 提供直观界面,结合 AI 工作流、RAG 管道、代理能力和模型管理等功能,支持通过可视化编排基于任何 LLM 部署 API 和服务。 Coze 提供丰富的插件能力和高效的搭建效率,支持发布到多个平台作为 Bot 能力使用。 3. 社区和支持: Dify 作为开源项目,拥有活跃的社区,开发者可参与共创和共建。 Coze 可能更多依赖官方的更新和支持,社区参与和开源协作程度可能不如 Dify。 选择使用 Dify 或 Coze 时,开发者和企业需根据自身需求和目标来决策。Dify 官网:https://dify.ai/zh ;Coze 官网:https://www.coze.com 。海外版的 Coze 大大降低了使用成本,在模型质量和数据源方面有明显优势,支持多种知名模型,拥有完善的插件市场和智能体市场,能与多种外部应用集成,生成更高质量的语言内容,更用户友好。
2025-02-15
langchain与dify哪个更有发展前景
LangChain 和 Dify 都是在 LLM 应用开发领域具有特点和优势的工具,难以简单地判断哪个更有发展前景。 LangChain 是一个编排框架,在提示链细节抽象、与外部 API 接口、从向量数据库检索上下文数据以及在多个 LLM 调用中维持内存等方面表现出色,为多种常见应用提供模板,在业余爱好者和初创公司中被广泛使用。但它目前仍是相对新的项目,且一些开发者在生产中更愿意切换到原生 Python 以消除额外依赖性。 Dify 是一个开源的 LLM 应用开发平台,具有快速部署、创意文档生成、长文档摘要、自定义 API、连接全球 LLM、更接近生产环境等优势。它允许用户编排从代理到复杂 AI 工作流的 LLM 应用,并配备了 RAG 引擎,旨在为特定行业提供聊天机器人和 AI 助手。 两者的发展前景取决于多种因素,如技术创新、市场需求、社区支持等。在不同的应用场景和需求下,它们各自都有发挥作用的空间和潜力。
2025-02-14
如何使用ai提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 提示词的定义和输入语言: 提示词用于描绘您想要的画面。 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 对使用提示词的认识: 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
2025-02-21
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
你使用了哪些大模型
以下是关于大模型的相关信息: 大模型的定义:大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 国内部分大模型: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 部分大模型的特点:在聊天状态下能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受限制使用的有 MiniMax;特色功能方面,昇思能生图,MiniMax 能语音合成。 大模型的动手实验:由于作者使用的是 macOS 系统,因此采用 GGML 量化后的模型。比较有名的相关项目有 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ 中下载模型,3G 到 7G 不等。此外,llama.cpp 还提供了 WebUI 供用户使用,首先启动 server,它默认监听 8080 端口,打开浏览器就可以对话。
2025-02-20
AI使用文档
以下是一份关于如何使用 AI 来做事的指南: 一、当前 AI 系统的发布情况 越来越强大的人工智能系统正快速发布,如 Claude 2 、Open AI 的 Code Interpreter 等,但似乎没有相关实验室提供用户文档,用户指南多来自 Twitter 影响者。 二、处理文档和数据 1. 处理文本,特别是 PDF ,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中,新模型更强大。通过询问后续问题来审问材料,但需注意系统仍会产生幻觉,若要确保准确性需检查结果。 2. 对于数据和代码相关: 代码解释器是一种 GPT 4 模式,允许上传文件、编写和运行代码、下载结果,可用于执行程序、数据分析、创建各种文件、网页甚至游戏。但使用它进行未经培训的分析存在风险。 对于大型文档或同时处理多个文档,可使用 Claude 2 ;对于较小的文档和网页,可使用 Bing 侧边栏( Edge 浏览器的一部分),但上下文窗口大小有限。 希望以上内容对您有所帮助。若想了解更多关于特定任务类型或工具使用的详细信息,可提前阅读相关文章。
2025-02-20
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19