Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI多久能学完?

Answer

学习 AI 所需的时间因人而异,没有一个固定的期限。不过,对于初学者来说,有一些简明的入门教程可以帮助您在 20 分钟内掌握 Python 和 AI 的相互调用,并完成一些基础任务,例如完成一个简单程序、一个爬虫应用以抓取公众号文章,以及一个为公众号文章生成概述的 AI 应用。

在深入学习 AI 时,很多人会因需要编程而感到困难,且各类教程默认会打命令行,导致入门不易。

从更广泛的角度来看,AI 是一个不断发展的领域,需要持续学习和更新知识。就像 Python 在 AI 领域被广泛使用,它拥有丰富的标准库,还能通过类似 pip 的工具和 GitHub 等平台获取更多资源。

而 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的服务,可通过代码调用完成更多自动化任务。

总之,学习 AI 是一个长期的过程,取决于个人的基础、学习能力和投入的时间精力。

Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

在深入学习AI时,许多朋友发现需要编程,变得头大。同时,各类教程都默认了你会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握Python和AI的相互调用。并使你在接下来的20分钟内,循序渐进的完成以下任务:完成一个简单程序完成一个爬虫应用,抓取公众号文章完成一个AI应用,为公众号文章生成概述[heading2]一些背景[content]知己知彼,百战不殆[heading3]关于Python[content]Python就像哆拉A梦,它:拥有一个百宝袋,装满了各种道具,被称为标准库。当遇到问题时,都可以拿出来直接使用。如果百宝袋里的道具不够用,还可以打电话给未来百货,去订购新道具。在这里:打电话:对应pip一类的工具,可以用来订购任何的道具。未来百货:对应GitHub一类的分享代码的平台,里面啥都有。被全世界广泛使用,尤其是在AI领域,所以遍地是大哥[heading3]关于OpenAI API[content]OpenAI通过两种方式提供服务:其一:通过ChatGPT,提供开箱即用的服务,直接对话即可,简单直观。其二:通过OpenAI API,提供更加灵活的服务,通过代码调用,来完成更多自动化任务,比如全自动将本地的1万本小说,从中文翻译成英文。发现了没,这里的OpenAI API,对应着上面未来百货道具。

写给不会代码的你:20分钟上手 Python + AI

在深入学习AI时,许多朋友发现需要编程,变得头大。同时,各类教程都默认了你会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握Python和AI的相互调用。并使你在接下来的20分钟内,循序渐进的完成以下任务:完成一个简单程序完成一个爬虫应用,抓取公众号文章完成一个AI应用,为公众号文章生成概述

苦涩的教训 The Bitter Lesson

The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective,and by a large margin.The ultimate reason for this is Moore's law,or rather its generalization of continued exponentially falling cost per unit of computation.Most AI research has been conducted as if the computation available to the agent were constant(in which case leveraging human knowledge would be one of the only ways to improve performance)but,over a slightly longer time than a typical research project,massively more computation inevitably becomes available.Seeking an improvement that makes a difference in the shorter term,researchers seek to leverage their human knowledge of the domain,but the only thing that matters in the long run is the leveraging of computation.These two need not run counter to each other,but in practice they tend to.Time spent on one is time not spent on the other.There are psychological commitments to investment in one approach or the other.And the human-knowledge approach tends to complicate methods in ways that make them less suited to taking advantage of general methods leveraging computation.There were many examples of AI researchers'belated learning of this bitter lesson,and it is instructive to review some of the most prominent.In computer chess,the methods that defeated the world champion,Kasparov,in 1997,were based on massive,deep search.At the time,this was looked upon with dismay by the majority of computer-chess researchers who had pursued methods that leveraged human understanding of the special structure of chess.When a simpler,search-based approach with special hardware and software proved vastly more effective,these human-knowledge-based chess researchers were not good losers.They said that``brute force"search may have won this time,but it was not a general strategy,and anyway it was not how people played chess.These researchers wanted methods based on human input to win and were disappointed when they did not.A similar pattern of research progress was seen in computer Go,only delayed by a further 20 years.Enormous initial efforts went into avoiding search by taking advantage of human knowledge,or

Others are asking
介绍一下有没有适合一个5个人软件开发公使用的AI服务器,包含软硬件
目前市面上有多种适合 5 人软件开发公司使用的 AI 服务器,软硬件的选择需要综合考虑多方面因素。 在硬件方面,服务器的处理器性能至关重要,例如英特尔至强系列处理器具有较强的计算能力。内存容量应足够大,以满足数据处理和模型训练的需求,建议至少 32GB 或更高。存储方面,高速的固态硬盘(SSD)可以提供快速的数据读写速度。 在软件方面,常见的操作系统如 Linux(如 Ubuntu、CentOS 等)具有较好的稳定性和兼容性。深度学习框架如 TensorFlow、PyTorch 等是进行 AI 开发的重要工具。同时,还需要配备相关的数据库管理软件、开发工具和监控软件等。 然而,具体的选择还需根据公司的业务需求、预算以及技术团队的熟悉程度来决定。
2025-02-05
AI辅助PPT生成的教程
以下是关于 AI 辅助 PPT 生成的教程: 一、AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力。 2. 生成打底的内容,减轻人写内容的工作。 文章生成 PPT,是让 AI 帮忙摘要内容,生成大纲列表。 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容。 在特定的场景下不用改直接用,如学生快速为小组展示配 PPT。 二、AI 辅助 PPT 生成的流程 1. 用户输入相关内容。 2. AI 输出文本。 3. 排版网站往往提供了各种形状和样式,网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版。 三、具体操作示例 1. 利用 Process ON 工具 网址:https://www.processon.com/ 输入大纲和要点 确定操作方式,目前该工具提供两种方式: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。以导入方式新建思维导图,选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 2. 几款 PPT 生成工具(网站) https://wenku.baidu.com 百度文库付费质量好 https://zhiwen.xfyun.cn/ 讯飞智文免费引导好 http://Chatppt.com 付费,自动化程度高 http://Mindshow.fun Markdown 导入 http://Gamma.app Markdown 导入 http://Tome.app AI 配图效果好 剪映:图文成片(只需提供文案,自动配图配音) 希望以上内容对您有所帮助。
2025-02-05
AI创意行业思维拓展方面的应用
以下是关于 AI 创意行业思维拓展方面应用的相关内容: 一、通过智能工具实现博客的高效数字化转型 1. 内容创作与管理中的常见挑战 2. 通过 AI 生成文章大纲与创意扩展 案例:从 1000 字到 5000 字的扩展 开始扩展:举例深化理解 以“AI 辅助写作的优势”为例,如使用 Claude 模型辅助写作后日均文章产出增加且质量未降,在克服写作瓶颈时提供新颖切入点,以及强大的数据处理和分析能力。 持续优化和润色:与 AI 互动,审阅扩展内容并获取优化建议,如指出表达不清之处和添加转折句增强连贯性。 最后润色:标题选择和整体评估 选定“AI 与人类协作:重塑内容创作的未来”的标题,AI 指出语法错误和表达不一致的地方并据此修改。 3. 成果和反思 文章从 1000 字扩展到 5200 字,耗时约 4 小时,比独立完成节省至少 60%的时间,深度和广度显著提升。 体会到 AI 是高效写作助手和强大思维拓展工具,帮助从多角度思考问题,发现被忽视的观点,同时需思考人类创作者在 AI 时代的独特价值,学会更好利用 AI 工具并保持创造力和批判性思维。 二、分众传媒携手阿里通义大模型开拓品牌广告 AI 营销新模式 1. 业务价值 品牌营销 AI 化:赋能品牌客户利用 AI 大模型技术进行品牌定位分析和策略制定,在存量博弈市场找到差异化优势,高效利用线下流量建立品牌势能。 降低营销门槛:通过一键生成广告语、一键 AI 设计等 AI 应用,帮助中小广告主快速高效制作广告创意素材。 业务价值回报:为分众拓宽客户边界,提高服务能力,通过对供给侧的生产效率变革提高传媒行业新质生产力。 AI 小智助手:通过“AIchat”对话交互方式进行品牌洞察分析和营销策略制定,基于通义千亿大模型进行准确语义理解和意图分类,并根据用户提问场景调用“众智 AI 大模型”回答问题并多轮交互。 AI 广告语:基于分众高质量广告语数据和方法论搭建的 Agent 生成应用,模拟营销专家创作思路,使用 Cot 思维链技术增强广告生成的准确性。
2025-02-05
面向老年人的AI agent
以下是为您整理的关于面向老年人的 AI agent 的相关信息: Meta 发布了可以利用 AI 自动剪辑视频的 Agents LAVE,结合 Sora 这样的视频生成模型,一些简单的短视频及广告视频可能无需人工介入。 人工智能可以赋予计算机个性,相关配套产品范围广泛,有些用于娱乐,有些专注于提供特定价值,比如帮助孩子浏览互联网或对抗老年人的孤独感。51%的成年人表示感到孤独,像 MyReplika 这样的应用程序可以减少自杀意念。 在基于 LLM 的 AI Agent 方面: 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。可利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,AI Agent 应将其分解为子任务并有效组织协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有一篇从训练数据中学习的文章),包括模仿人类专家行为,了解行为后果,并根据环境和人类反馈做出调整。环境反馈包括任务完成结果反馈和行动引起的环境状态变化中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 在具身智能方面:具身 Agent 强调将智能系统与物理世界紧密结合,其设计灵感来自人类智能发展,认为智能更多来自与环境的持续互动和反馈。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解所在物理环境并与其互动,利用内部丰富知识库进行决策和产生具体行动改变环境,这一系列行为被称为“具身行动”。
2025-02-05
ai制作的网站会被搜索引擎收录吗
AI 制作的网站有可能被搜索引擎收录,但这取决于多个因素。 搜索引擎收录网站通常会考虑网站的内容质量、结构、可访问性等方面。对于 AI 制作的网站,如果其内容具有价值、独特性,并且符合搜索引擎的算法和规则,同时网站的结构清晰、易于抓取和索引,那么就有被收录的机会。 目前有一些能联网检索的 AI 工具,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 作为 AI 助手可简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎提供基于人工智能的定制搜索体验并保持用户数据私密性。 此外,也有一些关于 AI 产品的相关信息,如独立开发者 idoubi 艾逗笔的产品 ThinkAny 经过三个月发展已成为月访问量 60 万的全球化产品,OpenAI 为维护服务质量和安全性将限制来自当前不支持国家和地区的 API 流量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-05
AI在智慧城市中的应用
AI 在智慧城市中有以下应用: 1. 交通领域: 自动驾驶:用于开发自动驾驶汽车,提升交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 2. 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货,将货物快速送达偏远地区。 3. 教育:实现个性化学习,为每个学生提供定制化的学习体验。 4. 农业:分析农田数据,提高农作物的产量和质量。 5. 娱乐:开发虚拟现实和增强现实体验。 6. 能源:优化能源的使用,提高能源效率。 此外,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。在智慧城市中,AI 还可以用于城市规划、公共安全管理、环境监测等方面,以提升城市的运行效率和居民的生活质量。
2025-02-05
AGI多久可以实现
目前关于 AGI 实现的时间存在多种推测和计划。OpenAI 总裁 Greg Brockman 在 2019 年表示,在微软投资 10 亿美元之后,OpenAI 计划在五年内构建一个与人类大脑大小相当的模型来实现 AGI,即 2019 + 5 = 2024 年。同时,网络上有一篇名为《揭示 OpenAI 计划在 2027 年前实现通用人工智能(AGI)的计划》的文档传播,其中提到 OpenAI 于 2022 年 8 月开始训练一个拥有 125 万亿参数的多模态模型,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。但需要注意的是,这些信息多为搜集和推测,包括各种报道和推文的拼凑猜测,并非都能轻易验证,大家可以当娱乐看并自行辨别文中推测的可能性。
2025-02-05
如果自己一个人要完成一个类似游戏的虚拟世界,需要一些什么软件,并且需要多久完成
要一个人完成类似游戏的虚拟世界,可能需要以下软件: 1. 图像生成软件,如 Midjourney、Stable Diffusion 等,用于生成概念图像和美术作品。 2. 3D 建模软件,用于创建 3D 模型、添加纹理和效果等。 完成所需的时间因多种因素而异,包括个人的技能水平、项目的复杂程度、投入的时间和精力等。像《Red Dead Redemption 2》这样复杂的游戏,制作成本近 5 亿美元,花了将近 8 年的时间来建造。但如果是相对简单的虚拟世界,时间可能会短很多。不过,这需要您具备扎实的相关技能和持续的努力。
2025-01-10
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
学AI难吗?小白需要多久入门?
学习 AI 的难度因人而异,但对于小白来说,入门是可行的。 例如,在“育儿:用 AI 开发远古动物列表”中提到,若只是学习相关应用,了解一些最基础的网页和编程知识即可,从小白开始估计一天甚至几个小时之内就能学会,因为绝大多数的工作还是由 AI 完成。 在“写给不会代码的你:20 分钟上手 Python + AI”中,考虑到深入学习 AI 时编程带来的困难以及各类默认会打命令行的教程导致的入门困境,这份入门指南旨在让大家更快掌握 Python 和 AI 的相互调用,能在接下来的 20 分钟内循序渐进地完成一个简单程序、一个爬虫应用抓取公众号文章、一个为公众号文章生成概述的 AI 应用等任务。 总的来说,小白入门 AI 的时间取决于学习的内容和个人的学习能力,短则几个小时,长则可能需要几天。
2024-09-28
陪护机器人最快多久能正式商用?
目前,在幼教场景中正在开发的陪伴机器人,预计半年内视频生成技术成熟,届时可实现一些创新功能。但对于陪护机器人整体的正式商用时间,由于不同应用场景和技术发展的差异,还难以给出确切的时间。在医疗领域,由 AI 驱动的护理机器人会早于手术机器人应用,但具体商用时间也不确定。总体而言,陪护机器人的正式商用时间受多种因素影响,仍需进一步观察和等待技术的发展与完善。
2024-09-04
你觉得通用机器人多久将成为现实
预测通用机器人的实现时间是一个复杂且具有不确定性的任务,涉及技术进步、经济因素、社会接受度等多个方面。尽管如此,我们可以基于当前的技术进展和趋势做出一些合理的推测。 当前的技术现状 1. 专用机器人:目前,机器人在特定领域(如制造业、物流、医疗等)已经展现了显著的能力。这些专用机器人在执行重复性和精确性任务方面表现出色。 2. 人工智能和机器学习:AI和机器学习技术迅速发展,在图像识别、自然语言处理、自动驾驶等方面取得了显著进展。深度学习算法、大数据和计算能力的提升,使得AI能够处理更加复杂和多样化的问题。 3. 机器人感知与行动:机器人感知(如视觉、听觉、触觉)和行动(如移动、抓取、操作)的能力在不断提升。先进的传感器和灵巧的机械手臂为机器人带来了更多的感知和操作能力。 挑战和难点 1. 通用智能:通用机器人需要具备通用人工智能(AGI),即能够处理多样化任务并在不同环境中灵活应对。目前,AGI仍是一个未解的科学难题,尽管AI在某些领域表现出超人的能力,但这些能力通常是狭窄和特定的。 2. 多模态融合:通用机器人需要整合视觉、听觉、触觉等多种感知能力,并能够在复杂环境中做出合理决策。这种多模态融合仍存在技术瓶颈。 3. 自主学习与适应:通用机器人需要具备自主学习和适应环境变化的能力。尽管强化学习等技术在某些方面取得进展,但在现实世界中实现高效的自主学习仍然困难。 4. 伦理与安全:通用机器人的广泛应用还涉及伦理和安全问题,如隐私保护、决策透明性、安全性和社会影响等。这些问题需要在技术实现之前得到解决和规范。 预测时间 基于以上分析,关于通用机器人何时能成为现实,可以考虑以下几个时间段: 1. 短期(510年): 专用机器人将在更多领域得到广泛应用,技术将更加成熟和可靠。 人工智能和机器人技术将继续进步,尤其是在感知、认知和行动方面的能力。 2. 中期(1020年): 我们可能会看到一些具备较高通用性的机器人出现在特定环境和任务中,如家庭助手机器人、护理机器人等。 这些机器人能够在一定范围内处理多样化任务,但距离真正意义上的通用机器人仍有距离。 3. 长期(20年以上): 真正的通用机器人,即具备类似人类的通用智能和适应能力的机器人,可能在这一时期开始出现。 这需要在人工智能、机器人技术、自主学习、伦理和安全等多个方面取得重大突破。 结论 尽管通用机器人的实现面临许多技术和非技术挑战,但随着科技的不断进步,我们有理由相信,在未来20年或更长时间内,通用机器人有可能从实验室走向现实,并在特定领域逐步展现其能力。然而,真正达到广泛应用的通用机器人还需要克服许多难题,并且这不仅仅是技术上的突破,还包括社会、伦理和法规方面的准备。
2024-05-22