Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

本地部署语言大模型后进行知识库训练

Answer

以下是关于本地部署语言大模型后进行知识库训练的详细步骤:

  1. 部署大语言模型:
    • 下载并安装 Ollama:根据您的电脑系统,从 https://ollama.com/download 下载,双击打开后点击“Install”。安装完成后,将下方地址复制进浏览器中确认:http://127.0.0.1:11434/ 。
    • 下载 qwen2:0.5b 模型(若设备充足,可下载更大的模型):
      • 如果是 Windows 电脑,点击 win+R,输入 cmd 后点击回车。
      • 如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。
      • 复制相关命令行并粘贴进入,回车后等待自动下载完成。(若下载久了卡顿,可鼠标点击窗口并按空格键刷新)
  2. 了解 RAG 技术:利用大模型的能力搭建知识库是 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。RAG 应用可抽象为 5 个过程:
    • 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。
    • 文本分割:文本分割器把 Documents 切分为指定大小的块。
    • 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。
    • 检索:通过某种检索算法找到与输入问题相似的嵌入片。
    • 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。
  3. 本地知识库进阶:
    • 安装 AnythingLLM:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。
    • 构建本地知识库:AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 与其他项目数据隔离。首先创建一个工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。
Content generated by AI large model, please carefully verify (powered by aily)

References

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

手把手教你本地部署大模型以及搭建个人知识库

因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片Output(输出):把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案[heading2]文本加载器(Document Loaders)[content]文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

Others are asking
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化和代码等数据。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互容量有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 3. 本地知识库进阶: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),完成配置后可进行测试对话。 总之,“看十遍不如实操一遍,实操十遍不如分享一遍”,希望您能成功搭建自己的知识库。如果对 AI Agent 技术感兴趣,可以联系相关人员或加入免费知识星球(备注 AGI 知识库)。
2025-02-08
有哪些AI知识库
以下是一些常见的 AI 知识库: 1. 通往 AGI 之路:这是一个由开发者、学者和有志人士参与的学习社区和开源的 AI 知识库。它提供了全面系统的 AI 学习路径,帮助用户了解从 AI 常见名词到 AI 应用等各方面知识。用户可以通过在飞书大群中与机器人对话获取对应的资料。其相关信息包括公众号、网站、内置知识库 AI 助手、B 站、小红书、X(Twitter)等渠道的内容。 2. 大圣的相关知识库:在大圣的中,以 AI 时代的知识库作为例子进行了讲解,目的是帮助非编程人士理解 AI 时代的知识库。
2025-02-07
用deepseek建立个人知识库
以下是关于用 DeepSeek 建立个人知识库的相关知识: RAG(Retrieval Augmented Generation,检索增强生成)是利用大模型的能力搭建知识库的关键技术。在进行本地知识库搭建实操前,需先了解 RAG。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过 RAG 实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入定制化知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。将文本转换成向量能节省空间,可理解为索引。比如有大文本,可拆分成小文本块并转换成 embeddings 向量,保存在向量储存库作为问答知识库。当用户提问时,问题先转换成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。例如,对于一篇万字长文拆分成多个文本块,提问“此文作者是谁?”,可通过比较 embeddings 向量得出关联度高的文本块。
2025-02-07
新手入门该看这个知识库里的哪些文章/视频,给我列一个学习 路径
以下是为新手入门提供的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 WayToAGI 知识库的使用: 1. 如果觉得视频太多很晕,可以从 Agent 板块开始,比如链接: ,从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。如果觉得内容多,可以先挑听过的工具开始。 2. 看了一些视频之后,如果想看理论或应用,可以找到导航,想看哪里点哪里。比如链接: 。 3. 还可以从常见工具开始体验,比如: 工具入门篇(AI Tools):数据工具多维表格小白之旅,文章链接: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者,可满足 80%数据处理需求。 工具入门篇(AI Code):编程工具Cursor 的小白试用反馈,文章链接: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白,可降低技术壁垒。 工具入门篇(AI Music):音乐工具Suno 的小白探索笔记,文章链接: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白,可参与音乐制作。
2025-02-07
从你的知识库中总结提炼一下,形成一个表格,告诉我目前已经有哪些面向个人和面向企业的AI应用\工具\智能体,以及具体的功能简介
|应用类型|应用名称|使用技术|功能简介|示例场景| |||||| |智能体应用(Assistant)|无|基于上下文对话,自主决策并调用工具|客户服务:了解客户诉求,解决客户问题。如查询订单状态、处理退款等。个人助理:管理日程安排、提醒事项、发送邮件等。技术支持:了解技术问题,提供解决方案,帮助用户排除故障。| |工作流应用(Workflow)|无|将复杂任务拆解为若干子任务|AI 翻译:实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量。| |智能体编排应用|无|支持多智能体协作|综合调研报告:组建一个报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体。软件开发团队:组建一个智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体。| |AI 游戏道具推荐系统|游戏内商城推荐功能|数据分析、机器学习|根据玩家需求推荐游戏道具。|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等。| |AI 天气预报分时服务|彩云天气分时预报|数据分析、机器学习|提供精准的分时天气预报。|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动。| |AI 医疗病历分析平台|医渡云病历分析系统|数据分析、自然语言处理|分析医疗病历,辅助诊断。|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。| |AI 会议发言总结工具|讯飞听见会议总结功能|自然语言处理、机器学习|自动总结会议发言内容。|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。| |AI 书法作品临摹辅助工具|书法临摹软件|图像识别、数据分析|帮助书法爱好者进行临摹。|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。| |超级简历优化助手|无|自然语言处理|帮助用户优化简历提高求职成功率。|超级简历优化助手分析简历内容并提供优化建议。| |AI 室内设计方案生成|酷家乐|图像生成、机器学习|快速生成个性化室内设计方案。|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案。| |AI 音乐创作辅助工具|Amper Music|机器学习、音频处理|协助音乐创作者进行创作。|Amper Music 根据用户需求生成旋律和编曲。| |AI 情感咨询助手|松果倾诉智能助手|自然语言处理、情感分析|提供情感支持和建议。|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询。| |AI 宠物健康监测设备|小佩宠物智能设备|传感器数据处理、机器学习|实时监测宠物健康状况。|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警。| |AI 旅游行程规划器|马蜂窝智能行程规划|数据分析、自然语言处理|根据用户需求生成个性化旅游行程。|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线。|
2025-02-06
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
推荐学习AI大模型的书籍
以下是为您推荐的学习 AI 大模型的相关书籍: 1. 从数学角度写大模型的书籍。 2. 从作家角度写大模型的书籍。 3. 从代码角度写大模型的书籍。 4. 从原理角度写大模型的书籍。 此外,在 Python 和 AI 方面,也有一些推荐: 1. Python 方面: 《Python 学习手册》 《Python 编程》 2. AI 方面: 《人类简史》(“认知革命”相关章节) 《深度学习实战》 希望这些推荐对您有所帮助。
2025-02-08
AI大模型应用面试题
以下是一些与 AI 大模型应用相关的面试题: 在游戏行业,大模型不仅能降低成本,还能打造创新玩法,如网易的《逆水寒》在美术开发、NPC 与玩家交互等方面的应用。请问您对这种应用的看法和理解? 在人力资源管理领域,AI 覆盖了从招聘到员工绩效评估等各个环节。请谈谈您对这种应用的认识以及其可能带来的影响。 在基础办公提效方面,如 PPT、Excel 等,AI 能从单个任务到角色协同显著提高工作效率。您认为这种提高在实际工作中的具体表现和重要性如何? 对于健身行业中的 AI 减重顾问,既能解决售前客服问题,又能进行健康监护,您如何看待这种应用的前景和挑战? 如何在 10 分钟内在网站上增加一个 AI 助手?比如创建大模型问答应用,包括获取大模型的推理 API 服务等步骤。 作为 AIGC 产品经理,在大模型方面,如对算法的熟悉程度、了解的大模型及其评价、快速体验各种模型的方法、大模型应用落地中注入领域知识的方式、大模型应用的评测、保证大模型价值观无害、对 PE 的理解及相关案例、对大模型微调及 RAG 的理解和优势、用大模型解决传统模型无法解决的业务问题、大模型面临的新安全危险及解决方法、幻觉的产生及解决手段等方面,您有怎样的见解和经验?
2025-02-07
推荐免费的tts公有模型站点,需要支持中文,克隆自己的声音
以下为您推荐支持中文且能克隆自己声音的免费 TTS 公有模型站点: GPTSoVITS: 只需 1 分钟语音即可训练一个自己的 TTS 模型。 5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,且适配中文,界面易用。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: 需要注意的是,Stuart 模型存在一些问题: 语音生成基本功能方面: 支持的语音时长不超过 30 秒,超过 30 秒的需要特别修复。 某些 audio seed 在念某些语句时会丢失一些语句。 Refine 过程中有些字会被丢失,比如“儿童节”在大概率会被 refine 成“童节”,丢失一个“儿”字。解决方法是跳过自动 refine,以手动修改文本的方式来控制停顿。 即使同一个 audio seed,如果使用不同的语句分段方式,或者不同的 text seed,生成的音色也不是很稳定,会给人感觉不是同一个人的声音。 代码 Bug: uv_break 等提示词可能会在 refine 之后缺少,甚至有时候在有中括号的情况下也会被念出来。 没提供微调 SFT 的接口。 本模型特别申明:不支持商用,仅用于学术研究。在生成的语音内,作者加了听不见的噪音水印,可以很容易的被检测出来是他的模型生成的语音。ChatTTS 还没放出训练代码无法自己克隆声音,作者还只放出了 4w 小时训练的版本,确保这个模型的声音能被 AI 检测出来。作者还留着一个 10w 小时训练数据的版本。
2025-02-07
推荐免费的tts模型站点,需要支持中文
以下为您推荐两个免费的支持中文的 TTS 模型站点: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,完美适配中文。GitHub: 。
2025-02-07
本地大模型联网搜索
以下是关于本地大模型联网搜索的相关内容: 部署本地大语言模型: 1. 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器确认:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型: Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择应用程序。 复制相关命令行粘贴回车,等待自动下载完成。 模型获取与分辨: 1. 模型下载网站:大多数模型可在 Civitai(C 站)https://civitai.com/ 下载。 科学上网(自行解决)。 点击右上角筛选按钮选择模型类型。 看照片找到感兴趣的点进去下载。 还可点击左上角“Images”查看他人做好的图片,点进去获取信息。 2. 模型保存地址: 大模型:SD 根目录即下载 SD 时存放的文件夹。 Lora、VAE 等。 3. 分辨模型类型:可使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处获取信息。 DeepSeek 联网版: 1. 核心路径:通过工作流+DeepSeek R1 大模型实现联网版。 2. 拥有扣子专业版账号:普通账号自行升级或注册专业号。 3. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型。 4. 创建智能体:点击创建完成智能体创建。
2025-02-07
垂直领域大模型训练指南
以下是一份垂直领域大模型训练指南: 一、大模型入门 通俗来讲,大模型就是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、LLM 开源中文大语言模型及数据集集合 1. 医疗领域 XrayGLM:首个会看胸部 X 光片的中文多模态医学大模型。 地址: 简介:该项目发布了 XrayGLM 数据集及模型,在医学影像诊断和多轮交互对话上显示出非凡潜力。 MeChat:中文心理健康支持对话大模型。 地址: 简介:该项目开源的中文心理健康支持通用模型由 ChatGLM6B LoRA 16bit 指令微调得到,数据集通过调用 gpt3.5turbo API 扩展真实的心理互助 QA 为多轮的心理健康支持多轮对话,提高了通用语言大模型在心理健康支持领域的表现,更加符合在长程多轮对话的应用场景。 MedicalGPT 地址: 简介:训练医疗大模型,实现包括二次预训练、有监督微调、奖励建模、强化学习训练。发布中文医疗 LoRA 模型 shibing624/ziyallama13bmedicallora,基于 ZiyaLLaMA13Bv1 模型,SFT 微调了一版医疗模型,医疗问答效果有提升,发布微调后的 LoRA 权重。 三、100 基础训练大模型 步骤三·Lora 生图: 1. 点击预览模型中间的生图会自动跳转到相应页面。 2. 模型上的数字代表模型强度,可在 0.6 1.0 之间调节,默认为 0.8。 3. 可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。 4. VAE 不需要替换。 5. 正向提示词输入所写的提示词,可以选择基于这个提示词一次性生成几张图。 6. 选择生成图片的尺寸,包括横板、竖版、正方形。 7. 采样器和调度器新手小白可以默认不换。 8. 迭代步数可以按照需求在 20 30 之间调整。 9. CFG 可以按照需求在 3.5 7.5 之间调整。 10. 随机种子 1 代表随机生成图。 11. 所有设置都完成后,点击开始生成,生成的图会显示在右侧。 12. 如果有某次生成结果不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,下次生成的图就会和这次的结果近似。 13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择放大的倍数。新手小白可以默认算法,迭代步数建议在 20 30 之间,重回幅度根据需求在 0.3 0.7 之间调整。 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。 提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-02-07
deepseek本地部署
DeepSeek 本地部署的相关信息如下: DeepSeek R1 大模型成为国民刚需,但官网卡顿且存在不能联网等问题。本地部署版本可作为替补,但难以长期使用。 实现联网版 R1 大模型的核心路径是通过工作流+DeepSeek R1 大模型。 拥有扣子专业版账号,若为普通账号需自行升级或注册专业号。 开通 DeepSeek R1 大模型的访问地址为:https://console.volcengine.com/cozepro/overview?scenario=coze 。在火山方舟中找到开通管理,开通服务并添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体,点击创建完成智能体的创建。 此外,DeepSeek 有三种含义指向,包括 deepseek 公司(深度求索)、deepseek 网站和手机应用、deepseek 大模型(尤其是有推理功能的 deepseek R1 大模型,权重文件开源,可本地部署)。 相关社区动态有: 《》介绍了 DeepSeek 最新模型 V3 与 R1 的架构创新。 《》介绍了字节跳动推出的新技术 OmniHuman。 《》强调了 DeepSeek 在算力效率和算法变革方面的重要意义。
2025-02-08
本地部署DEEPSEEK方法。
以下是本地部署 DEEPSEEK 的方法: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功的样式如相关描述。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze 。打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 此外,DEEPSEEK 具有多种含义指向,包括 deepseek 公司:深度求索,以及 deepseek 网站、手机应用和 deepseek 大模型(尤其是指有推理功能的 deepseek R1 大模型,权重文件开源,可本地部署)。同时,相关社区动态也有关于 DeepSeek 的报道,如 DeepSeek 最新模型 V3 与 R1 采用混合专家(MoE)架构,显著提升计算效率等。
2025-02-08
本地 部署deepseek
DeepSeek 相关信息如下: DeepSeek 有多种含义,包括公司、网站、手机应用和大模型,尤其是具有推理功能的 DeepSeek R1 大模型,其权重文件开源,可本地部署。 模型方面,JanusPro 是一种新型自回归框架,将图像理解和生成统一在一个模型中,模型(7B):https://huggingface.co/deepseekai/JanusPro7B ,模型(1B):https://huggingface.co/deepseekai/JanusPro1B 。 联网版的实现方式:通过工作流+DeepSeek R1 大模型,需要拥有扣子专业版账号,开通 DeepSeek R1 大模型的访问地址为:https://console.volcengine.com/cozepro/overview?scenario=coze ,添加在线推理模型,添加后在扣子开发平台才能使用,还需创建智能体。 相关新闻: 《》提到 DeepSeek 最新模型 V3 与 R1 采用混合专家(MoE)架构,显著提升计算效率,挑战 OpenAI 的闭源模型。V3 引入多头潜注意力(MLA),将 KV 缓存压缩至新低,提升计算性能。R1 则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 《》介绍了字节跳动推出的新技术 OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。 《》指出 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI 基础大模型的参数量迎来拐点,2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。此外,报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-02-07
linux 下部署deepseek
在 Linux 下部署 DeepSeek 的步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动后生成语音时,需查看控制台输出,它会下载一些模型文件,因此比较慢,且可能因网络问题失败。但第一次加载成功后,后续会顺利。 5. 基于此基础可进行拓展,比如集成到 agent 的工具中,或结合 chatgpt 做更拟人化的实时沟通。 webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个数字参数,用于选择声音类型,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿。实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果。例如,可以设置为 。 使用 DeepSeek 的步骤: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 Deepseek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 关于 DeepSeek 的评论: 游戏科学创始人、黑神话悟空制作人冯骥称:年前还是认真推下 DeepSeek 吧。V3 已经用了一个月,但 R1 仅仅用了 5 天。DeepSeek 可能是个国运级别的科技成果。它具备强大的推理能力,比肩 O1;参数少,训练开销与使用费用小;开源,任何人均可自行下载与部署;免费,官方目前提供的服务完全免费;支持联网搜索,是暂时唯一支持联网搜索的推理模型;由没有海外经历甚至没有资深从业经验的本土团队开发完成。如果这都不值得欢呼,还有什么值得欢呼?看到这条微博的您应直接访问网页链接马上用起来,也有移动 APP。
2025-02-06
deepseek R1部署
以下是关于 DeepSeek R1 部署的相关信息: DeepSeek R1 大模型成为国民刚需,但官网卡顿且存在不能联网等问题。 实现联网版 R1 大模型的核心路径是通过工作流+DeepSeek R1 大模型。 部署步骤包括: 拥有扣子专业版账号,若为普通账号需自行升级或注册专业号。 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体,点击创建完成智能体的创建。
2025-02-06
怎么本地部署DEEPSEEK
以下是本地部署 DeepSeek 的步骤: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功后会呈现相应状态。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 4. 创建工作流: 创建一个对话流,命名为 r1_with_net,注意是“创建对话流”。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:这里需要在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek,输入包括搜索结果和选择开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。 5. 测试并发布工作流:输入您的测试问题,测试完成后,直接发布工作流。
2025-02-06
AI怎么训练
AI 的训练是指通过大数据训练出一个复杂的神经网络模型。具体来说: 1. 收集海量数据:如同教孩子成为博学多才的人需要让其阅读大量书籍等,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:像为孩子整理适合其年龄和学习能力的资料一样,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划类似,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,其擅长处理序列数据(如文本)。 4. 进行训练:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的所有数据,这个过程被称为“训练”。例如,模型会反复阅读数据,尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。 此外,为了在医疗保健中让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和正规学校教育开始,再到学徒实践。对于 AI 来说,当前学习方式及技术人员对待方式使问题更严重,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。就像预医学生从基础课程学起,设计新疗法的科学家需多年学习后在指导下工作,这种方式有助于培养处理细微差别决策的直觉。 同时,机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及多领域学科。自然语言处理是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。推理是指利用训练好的模型,使用新数据推理出各种结论。
2025-02-08
我想用自己训练的卡通形象lora生成一张元宵节放孔明灯的海报,应该怎么制作
以下是用自己训练的卡通形象 lora 生成元宵节放孔明灯海报的制作方法: 1. 关键词: 模型:dreamshaper_8 正关键词:,white,white_background,CGposterrender bsw <lora:电商新年海报 2024_v1.0:0.4>,gold,<lora:新年红包封面_v1.0:0.6>,new year,<lora:gcbottle:0.3> 中文的关键词:(杰作,高分辨率,高品质,高分辨率)中国建筑,红色主题,剪纸,中国结,纸灯笼,中国图案,金色,中国元素,红色背景 2. ControlNet 设置: 预处理器:depth_leres 模型:control_v11f1p_sd15_depth 权重:0.75 预处理器:softedge_pidinet 模型:control_v11p_sd15_softedge 权重:0.3 3. lora 资源: https://www.liblib.ai/modelinfo/bddf824e232f4124991c05a26027504d https://www.liblib.ai/modelinfo/983703dd48134e43983b84abfcb44308 第三个东方瓷器 lora 已经下架(请至 AGI 之路百度云下载) 链接:https://pan.baidu.com/s/10hYM8i2y2Li9OlT2oD1qOQ 密码:asub 您可以参考以上步骤进行制作,同时您还可以访问以下链接获取更多相关信息: 作者小红书:https://www.xiaohongshu.com/user/profile/5cfd0e600000000016029764?wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu 通往 AGI 之路小红书教程:http://xhslink.com/OOeHsy AI 春晚阶段性纪实:https://waytoagi.feishu.cn/wiki/MI0UwhfXJiRH9ak4dwxcwqPVnIh
2025-02-08
训练数字人
以下是关于训练数字人的相关内容: 工作流: 1. 先用 Stable different 生成自己脸部的 Lora,然后生成各种不同风格的图片,并进行配音。 2. 在 heygen 里面让图片口型和配音对上。 第一步:拍摄训练的图片。 第二步:使用 EasyPhoto 开始训练,等待显示 The training has been completed 表示完成。 第三步:训练好的 lora 用来推理,注意推理使用的底图尽量和自己外形相似,尤其是发型。 在剪映中生成数字人的方法: 1. 在剪映右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择后可根据声音判断是否需要,点击右下角“添加数字人”将其添加到当前视频中,左下角会提示渲染完成时间,完成后可点击预览查看效果。 2. 增加背景图片:删除先前导入的文本内容,点击左上角“媒体”菜单并“导入”本地图片,将图片添加到视频轨道上,可通过拖拽轨道右侧竖线使其与视频对齐,选中轨道后可调整背景图大小和数字人的位置。 构建高质量 AI 数字人: 参考“真正的人”,赋予数字人躯壳和灵魂。数字人的躯壳要有好看的皮囊,能进行可视化、带有神态动作的动态互动;数字人的灵魂要具备一定智能水平,能理解交互对象信息并给予有效、符合预期的回应。
2025-02-08
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢?比如扣子或者钉钉,可以吗
目前市面上常见的软件中,豆包暂时未获取到扣子或钉钉有此功能的相关信息。不过,像一些专门的自然语言处理和机器学习平台,如 OpenAI 的 GPT 系列、百度的文心一言等,在一定的技术支持和合规操作下,有可能实现您的需求。但需要注意的是,将大量以往的笔记用于训练模型可能涉及到数据隐私和版权等问题,需要谨慎处理。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢
目前市面上还没有专门针对小红书笔记且能完全满足您需求的成熟软件。一般来说,使用现有的自然语言处理模型进行这样的训练存在诸多限制和法律风险。小红书对于内容的原创性和合规性有严格要求,使用以往的笔记进行训练可能违反平台规定。但您可以通过学习和借鉴以往笔记的写作风格、结构和主题,人工创作出新的优质笔记。
2025-02-07