Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI教育

Answer

以下是关于 AI 教育的相关内容:

人们对 AI 时代教育的期待: 长期以来的应试教育存在诸多弊端,如题海战术、考试制度等,导致学生创造性和创新性思维相对较差,且可能让学生对学习丧失兴趣。虽然教育资源比过去充裕,但学生学习能力未明显提升。对于三四五六线城市的学生,选择相对较少。

学校在 AI 教育方面的探索: 北京市新英才学校的师生已行动起来,跨学科项目老师带学生用 AIGC 做学校地图桌游,英语老师借助 AIGC 备课授课,生物和信息科技老师合作带学生训练 AI 模型识别植物。学校领导层重视,给予老师很大自由空间,目前处于探索初级阶段,但有一定经验成果。

中学生学习 AI 的建议

  1. 从编程语言入手学习,如 Python、JavaScript 等,掌握编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等),以及在各领域的应用案例。
  4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题。
  5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 时代的教育 The Intelligence Age's Education - 知乎

在畅想之前,我想简单聊聊人们为什么会对下个AI时代的教育怀有期待。谈起教育,我相信大部分人都对长时期以来的题海战术、考试制度、运行体系等等提出很多的或尖刻或温和的批评。似乎大家都非常了解应试教育体系之下不断内卷产生的种种弊端,但是对于如何解决这种弊端同时还能保证教育公平又显得无能为力和乏善可陈。举个最典型的例子就是刷题,比如下面两张图是人教版的小学三年级上册数学课本,满篇的题目可以说是从头到尾。我们的教育改革实践这么多年过去了,以刷题为核心的应试教育体系依然不可动摇。以至于后来慢慢演变出一个新的词语叫所谓的“小镇做题家”。其实我这里并不是想讨伐刷题不好,在目前的考试标准和形态之下,暂时还没有比刷题更高效,更具性价比的应试方法。但是这种以试题作为升学考试唯一标准的选拔方式的负面影响确实越来越大,典型代表就是在这套体系下培养出来的学生,创造性能力和创新性思维相对较差的情况,这种弊端在研究生、博士生阶段体现的更为明显。而且还有一个更为严重的问题是,无限内卷刷题会孩子们对让学习本身越来越丧失兴趣。平心而论当下的教育资源要比10年前,20年前信息不发达的时候充裕的多,今天在知乎、B站、douyin还有海外教育平台上都可以随处找到非常优质的课程与教材。但是我的感受却是这一代学生的学习能力并没有特别明显的跃升。而对于哪些在时代的洪流下的小镇做题家们来说,通过刷题来到大学之后迎来的不是打开新世界的大门,反而是愈加的迷茫与无所适从。诚然很多朋友也许会说,觉得应试不好可以选择出国,可以留学。我知道对于一二线的很多家庭来说,走应试的路线并非唯一选择,但是与此同时哪些三四五六线城市成长的“小镇做题家”们,真的没有太多的选择,除了往死里卷,其他的可选路径并不大多。

桌游、英语分级、生物模型……这所学校的师生用生成式AI做了这些事情!

来源|多知作者|王上当大众都在讨论生成式人工智能(AIGC)对教育的影响时,学校已经行动起来。跨学科项目老师带着学生用AIGC做学校地图桌游,英语老师在AIGC的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练AI模型,用以识别植物……这是北京市新英才学校正在探索的事情,数字与科学中心EdTech跨学科小组组长魏一然正在深入参与其中。魏一然曾在美国范德堡大学读研究生,在创新学校做过老师,还在腾讯做过教育产品经理,而今在北京市新英才学校的工作内容似乎是为她量身订做的——以AIGC为切入点,做教师培训,探索新的教学方式,并指导学生做新的项目。在这个过程中,魏一然感触颇多,她在接受多知访谈时提到:“我没想到的是,学生们对AIGC的认知和理解有天壤之别,有部分学生对ChatGPT等工具几乎一无所知,很难提出好问题;但有小部分学生熟稔各种AI工具,比老师都懂。”对于目前的进展,魏一然说:“学校领导层非常重视人工智能教育的发展,鼓励老师们大胆探寻新的教育方式和教育工具,也给了很大的自由空间。整体而言,我们还在探索的初级阶段,但也有了一定的经验和成果。”[heading1]01

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
我需要仿写 AI工具的教程文章,应该怎么写提示词
以下是关于如何仿写 AI 工具教程文章中提示词的相关内容: 样例驱动的渐进式引导法就像让 AI 主动读懂您的想法。它以 1 2 个正向样例为起点,通过与 AI 的多轮对话,引导其从样例中提炼隐含的生成要求,逐步完善提示词。 例如,教 AI 仿写爆文时,只需提供优秀样例,AI 会自动分析理解精髓并生成符合自身运作的指令。这种方法无需用户具备专业的 Prompt 工程知识,也不用费力提炼“Know How”,利用 AI 就能自动生成精彩的 Prompt。 其核心步骤包括: 1. 构建初始样例:创建符合期望输出的具体例子。 2. 评估样例,尝试提炼模板:让 AI 分析理解样例结构和关键元素,并以专家视角优化。 3. 固定模板,强化要求说明:基于对初始样例的理解,让 AI 提出通用模板,通过测试 Prompt 验证可靠性。 4. 生成结构化提示词:将优化后的模板转化为结构化提示词,用户适当调整确认后即可使用。 在这个过程中,用户的角色主要是: 1. 提供尽可能与自己预期一致的初始样例。 2. 判断 AI 的输出质量。 3. 反馈改进建议,提供行动引导。 这种方法的优势在于简化了提示词设计过程,让非专业用户也能创建高质量的 Prompt。用户可专注于判断输出质量和提供反馈,无需深入理解复杂的 Prompt 工程技巧。 此外,编写提示词(prompt)还有一些通用建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:任务需要背景知识时,在 prompt 中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:有特定期望结果时,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,过多信息可能使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代达到满意结果。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供定制服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和应对风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者初期使用公开金融数据训练模型,后续会生成自己的数据,并以 AI 作为新产品分销突破口。
2025-02-06
从零开始学习ai
以下是从零开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-06
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06
国内最知名AI学习导航网站
以下是国内一些知名的 AI 学习导航网站: |排行|产品名|分类| |||| |46|toolsdar|导航网站| |20|AIbot ai 工具集|导航网站| 这些网站在不同月份的访问量和相对变化情况有所不同。您可以根据自身需求进一步了解和选择。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供个性化服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和管理风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者起初可能用公开金融数据训练模型,随后会生成自己的数据,并将 AI 作为新产品分销突破口。
2025-02-06
AI教育都有哪些应用
AI 教育的应用主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解学生写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程。 此外,AI 在教育领域的应用还体现在为每个学生提供定制化学习体验、帮助教师生活更轻松和课程更有效、用于自学学习等方面。但使用时需注意对关键数据根据其他来源仔细检查,以防人工智能产生幻觉。
2025-01-24
全球十大AI+教育项目
以下是为您整理的部分全球 AI+教育项目: 1. 书籍推荐:三本神经科学书籍 简介:AI 是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的 prompt 模板或设计 prompt,与 AI 协作(对话沟通)等等,有一些基础学科作为基底,或许能打开 AI 的新天地 作者:无 分类:教育 前往查看: 入库时间:2023/11/12 2. AI 赋能教师全场景 简介:来自 MQ 老师的投稿贡献,图中有老师的微信,欢迎交流沟通 作者:MQ 老师 分类:教育 前往查看: 入库时间:2023/11/29 3. 未来教育的裂缝:如果教育跟不上 AI 简介:人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示 AI 如何实际影响教学和学习方式。 作者:赛博禅心 分类:教育 前往查看: 入库时间:2023/11/30 4. 化学:使用大型语言模型进行自主化学研究 简介:文章地址:<br>nature 前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。 作者:乐谷说 分类:教育 前往查看: 入库时间:2023/12/24
2025-01-23
AI教育创新机构
以下是关于 AI 教育创新机构的相关信息: 在已结束的 AI 创客松活动中,存在不同的组别。其中,组别 8 为 AI 教育创新者,组员包括姚欧强ᶜᵘᶜ、邱运、珊若、在路上、Zima,建议项目是开发针对不同教育阶段的 AI 应用,结合科学研究成果,提升教育质量和效率。 北京市新英才学校的师生用生成式 AI 做了很多事情,如跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生用训练 AI 模型识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中,学校领导层重视人工智能教育发展,给予很大自由空间,目前还在探索初级阶段,但有一定经验和成果。 6 月 11 日的 AI 秒学团队期待与更多相关人员和机构合作,共同推动儿童教育的创新和发展。
2025-01-23
1.Gpt在教育邻域的快速发展
GPT 在教育领域的快速发展表现为以下方面: 训练方式:包括预训练、有监督微调、奖励建模、强化学习等阶段,每个阶段都有相应的数据集、算法和模型。 在教育中的影响:以 ChatGPT 为代表的生成式人工智能技术的出现,为教育带来冲击。许多教育工作者认识到大模型技术的进步对教育的意义。但目前市场上虽看好 AI 对各行业的赋能,却尚未诞生出相关的 Super APP,存在对 AI 发展的不同看法和预期。
2025-01-22
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21