Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai对质量管理有哪些帮助

Answer

AI 对质量管理的帮助主要体现在以下几个方面:

  1. 制造业:
    • 预测性维护:可预测机器故障,帮助工厂避免停机。
    • 质量控制:能够检测产品缺陷,提高产品质量。
    • 供应链管理:优化供应链,提高效率和降低成本。
    • 机器人自动化:控制工业机器人,提高生产效率。
  2. 金融服务业:
    • 贷款员工作:生成式 AI 模型可在相关系统数据上训练,贷款员提供客户名称即可立即生成贷款文件,提高数据收集效率和准确性。
    • 质量保证:可大大加速确保符合众多监管机构要求的过程。
  3. 软件开发:在构建和维护生产级大型语言模型(LLM)应用程序中,评估指标对于质量控制和防止重复故障案例至关重要。LLM 应用程序的评估可分为端到端和步骤/组件式评估,前者提供整体质量感知,后者有助于识别和减轻可能影响整体质量的故障模式。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

AIGC Weekly #56

鉴于AI正在快速发展并能够执行广泛的任务,作者认为对于某些项目,在AI技术进一步改进之前等待可能更加有利。这一点在那些耗时长且AI已有合理表现的任务中尤为显著,如写作小说或软件开发。该文章讨论了在构建和维护生产级大型语言模型(LLM)应用程序(如GitHub Copilot)中,评估指标的重要性。这些指标对于质量控制和防止重复故障案例至关重要。LLM应用程序的评估可以分为端到端和步骤/组件式评估。前者提供了整体质量感知,而后者有助于识别和减轻可能影响LLM应用程序整体质量的故障模式。该文章概述了适用于端到端和组件式评估的不同场景的评估指标。这些见解来自研究文献以及与其他LLM应用程序构建者进行的讨论。文章还提供了Python代码示例。语言模型(LLMs)如GPT-4是无监督任务的强大工具,但可能会出现“幻觉”,即生成似是而非的信息。为了缓解这一问题,可以采用以下几种策略:高级提示:这涉及在系统提示中提供清晰的指示,以避免传播错误或不可验证的信息。例如,使用一个提示来指导模型不要传播不正确的数据。少样本提示:向LLM提供少量特定示例以引导其回应,有助于它专注于主题和上下文。示例的质量至关重要,因为糟糕的示例可能导致更多幻觉。思维链式提示:鼓励LLM在最终答案之前生成推理步骤,可以通过逐步思考或提供推理示例来实现。然而,这可能会引入产生幻觉推理的风险。数据增强:当上下文超出模型窗口时,数据增强可以通过添加专有数据或外部工具/知识来帮助。技术包括:检索增强生成(RAG):将模型知识与检索系统结合起来,在实时中获取相关数据。工具集成:使用函数调用、API调用和其他工具来提高准确性,尽管这需要进行广泛测试和实验。

金融服务业将比你想象得更快地接纳生成式 AI

客户服务代表:在每家银行,成千上万的客户服务代表都必须对银行的产品和相关的合规要求进行痛苦的培训,以便回答客户的问题。现在想象一下,一个新的客户服务代表开始工作,他们可以使用已经经过过去10年所有银行部门客户服务通话训练的大语言模型。代表可以使用该模型快速生成任何问题的正确答案,并帮助他们更聪明地谈论更广泛的产品,同时减少培训他们所需的时间。现有公司会希望确保他们的专有数据和客户特定的个人身份信息没有被用于改进其他公司可能使用的通用大语言模型。新进入者将必须在如何启动数据集方面具有创意。贷款员:贷款员目前从近十个不同的系统中提取数据来生成贷款文件。一个生成式AI模型可以在这些系统的所有数据上进行训练,这样贷款员只需提供客户名称,贷款文件就会立即为他们生成。贷款员可能仍然需要确保100%的准确性,但他们的数据收集过程将更加高效和准确。质量保证:银行和金融科技公司的大部分质量保证工作都涉及确保完全符合众多监管机构的要求。生成式AI可以大大加速这个过程。例如,[Vesta](https://www.usevesta.com/)可以整合一个经过Fannie Mae销售指南训练的生成式AI模型,以便立即提醒抵押贷款员合规问题。由于许多监管指南都是公开的,这可能为新的市场参与者提供了一个有趣的入口。然而,真正的价值仍然将归属于拥有工作流引擎的公司。这些都是迈向一个世界的步骤,在这个世界里,Sally可以即时获得可能的抵押贷款。--Angela Strange,Alex Rampell,和Marc Andrusko

Others are asking
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供定制服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和应对风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者初期使用公开金融数据训练模型,后续会生成自己的数据,并以 AI 作为新产品分销突破口。
2025-02-06
从零开始学习ai
以下是从零开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-06
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06
国内最知名AI学习导航网站
以下是国内一些知名的 AI 学习导航网站: |排行|产品名|分类| |||| |46|toolsdar|导航网站| |20|AIbot ai 工具集|导航网站| 这些网站在不同月份的访问量和相对变化情况有所不同。您可以根据自身需求进一步了解和选择。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供个性化服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和管理风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者起初可能用公开金融数据训练模型,随后会生成自己的数据,并将 AI 作为新产品分销突破口。
2025-02-06
AI配音
以下是关于 AI 配音的相关信息: TecCreative 中的 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声,高效解决素材出海语言障碍问题。 操作指引:输入需配音文案——选择音色——点击立即生成。 注意:输入的配音文案需和选择音色语种保持一致。 一些领先的视频配音特效 AI 工具: Wavel Studio:支持 30 多种语言的配音,音质自然流畅,自动去除背景噪音和杂音,提供添加字幕和文本叠加层的工具,界面友好,提供多种自定义选项。 Elai.io:支持 65 多种语言的配音,音色和语调真实,自动将唇形与语音同步,生成字幕,提高视频的可访问性,支持多位配音者,适合复杂对话场景。 Rask AI:支持 130 多种语言的配音,包括稀有和濒危语言,采用先进语音合成技术,音质高保真,提供语音参数自定义和音效添加工具,与多种视频编辑平台和工作流程整合。 Notta:提供快速实惠的多语言配音解决方案,保留原声说话风格和细微差别,提供调整语音速度和音调的工具,支持批量处理,高效完成多视频配音。 Dubverse:支持 60 多种语言的配音,音质接近真人,提供文本转语音和语音克隆功能,提供语音参数自定义和情感添加工具,与多种视频平台和社交媒体渠道整合。 Speechify:支持 50 多种语言的配音,音质自然流畅,提供实时配音功能,适用于直播和演讲,将语音转录为文本,方便后期字幕制作和编辑,与多种生产力和学习工具整合。 Vidnoz AI:支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,提供面向个人和企业的经济实惠的定价方案。 在选择视频配音工具时,请考虑支持的语言数量、语音质量、自定义选项和价格等因素。
2025-02-06
大学老师可以使用哪些人工智能软件帮助提升教学效率
以下是一些大学老师可以使用来提升教学效率的人工智能软件和相关应用: 1. 个性化学习计划方面:能够分析学生表现,根据知识差距和个人学习风格创建定制的学习路径。 2. 课程开发/学习沉浸方面:包括生成模型生成图像、文本和视频,转化为补充教育材料、作业和练习题。例如可以想象与牛顿本人讨论牛顿第三定律,或者在亚利桑那州立大学的 VR 实验室中学习生物学。 3. 社会互动/沟通方面:与新的 AI 工具(如口语形式的 GPT4o)结合学习,可以为学生提供更好的准备工具,以应对依赖口语/展示沟通的高等教育和职场环境。 4. 备课助手方面:如星火教师助手、知网备课助手。 5. 作文批改评分方面:BigModel 智谱 AI 大模型开放平台可以凭借其卓越的数据处理能力以及广泛的应用潜力,为教师提供帮助。 6. 语言学习方面:像 Speak、Quazel 和 Lingostar 这样的应用可以作为 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 7. 数学学习方面:Photomath 和 Mathly 这样的应用可以指导学生解决数学问题。 8. 历史学习方面:PeopleAI 和 Historical Figures 可以通过模拟与杰出人物的聊天来教授历史。 9. 写作方面:Grammarly、Orchard 和 Lex 等工具可以帮助学生克服写作难题,并提升写作水平。 10. 演示文稿制作方面:Tome 和 Beautiful.ai 可以协助创建演示文稿。
2025-02-06
在写文章方面AI给我们的帮助有哪些
在写文章方面,AI 能为我们提供多方面的帮助: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 不到 30 分钟打造爆款公众号文章的关键在于提供清晰且具指导性的提示词(prompt): 已有基本提示词时,AI 能生成基础文章。 若想提升质量,可提供更详细、具创意的提示词,让 AI 更好捕捉文章语气、风格和重点。 例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词不仅提供明确指导,还设定文章基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章。但最终产出的内容可能需微调,以符合预期和公众号风格。
2025-02-04
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
哪个ai能免费帮助写ppt
以下是一些能够免费帮助写 PPT 的 AI 工具: 1. 讯飞智文:http://zhiwen.xfyun.cn 。 2. Gamma:其免费版本也能生成质量较高的 PPT,在性能和用户体验方面表现卓越。 此外,还有一些相关的信息供您参考: 1. 橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身,可用于内容自动生成、格式自动调整等,也能辅助制作 PPT。 2. 卓 sir 曾使用 GPT4、WPS AI 和 chatPPT 这 3 个 AI 工具完成 PPT 作业。 您可以根据自己的需求选择适合的工具。
2025-01-29
哪个ai能帮助写ppt
以下是一些能够帮助写 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,输入简单文本描述生成专业设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI 此外,熊猫 Jay 分享了超全的 AI 工具生成 PPT 的思路和使用指南,卓 sir 也介绍了自己使用 GPT4、WPS AI 和 chatPPT 完成 PPT 作业的经验。
2025-01-29
我是一名小说家,需要ai帮助
以下是关于小说家利用 AI 进行小说创作的相关内容: 南瓜博士在人机协作小说创作中有着丰富的经历。除了无名猫视角的获奖作品,还为 LLM 小说比赛尝试了多种方法,包括编写 agent flow 框架让 AI 自动按步骤写作和评判,但因无法认同 AI 的审美而放弃。之后选择在 GPT 页面上对话,先让 AI 生成大量创意,自己进行判断挑选,写作时 AI 勤勤恳恳,自己负责掌舵,最后给出改进意见由 AI 遵循修改。 在具体创作过程中,为确保文章前后一致,先让 AI 写故事概要和角色背景介绍并略作修改。让 AI 以表格形式输出细节描述有三个好处:打破叙事习惯避免陈词滥调;按编号做局部调整容易;确保内容都是具体细节。然后把生成的表格依次复制粘贴让 AI 写文章,偶尔需要自己给建议。 在修改环节,小说大赛要求作品不能改动且不能超 2000 字,让 GPT4 改时它很快暴露出记性不好的缺点,求助 Claude 时关键情节被改没。总之,小说创作中,人有人的用处。
2025-01-23
制造业质量管理可以应用ai做些什么
在制造业质量管理方面,AI 有以下应用: 1. 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 2. 预测性维护:能够预测机器故障,帮助工厂避免因设备问题影响产品质量。 3. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,从而间接保障产品质量。 4. 工业质检:作为基于视觉的检测方式,虽然相对成熟但未深入 B 端核心应用场景,如今可通过多模态和大模型解决上一代无法解决的问题,提升质检性能。
2025-02-06
我是行政专员,零基础入门AI,如果帮忙自己提供工作效率和质量
对于行政专员零基础入门 AI 以提升工作效率和质量,以下是一些建议: 1. 了解 AI 的应用场景:AI 在很多领域都有显著的成果,如交通监控、银行账户欺诈检测、核融合控制、新药发现以及应对气候变化的技术等。它有潜力在您的工作中发挥作用,例如自动化一些重复性的任务。 2. 建立 AI 工作流:目前大多数人零碎地使用 AI 工具,未将其系统应用到工作场景中,导致整体效率提升不明显甚至下降。要避免像小明那样在挑选和切换工具上浪费时间,应建立一套完整、适合自己的 AI 工作方法论和流程。 3. 系统学习和实践:深入学习如何将 AI 工具与行政工作相结合,通过不断实践找到最适合自己工作的方法和工具。
2025-01-30
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
如何高质量的提问AI
以下是关于如何高质量提问 AI 的一些建议: 1. 针对具体任务进行环节拆分:例如在使用 AI 进行数据分析时,将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现修正问题。 2. 逐步深化和细化问题:对于复杂问题,先提出宽泛问题,再根据回答进一步细化或深化,如处理知识产权侵权案件时,先问被告是否侵权,再根据回答追问侵权类型和程度。 3. 提供参考和学习内容:包括详细操作指南、行业最佳实践、案例研究等,并编写详细流程和知识(knowhow),如自动化文档处理中编写处理不同类型文档的指南。 4. 利用专业领域术语引导:在 Prompt 中使用法律术语引导 AI 回答方向,如处理合同纠纷时提示从特定方面分析合同履行情况。 5. 验证与反馈:大模型语料有滞后性,使用 AI 回答后要交叉验证确保准确性,同时结合自身专业知识筛选判断,确保符合法律伦理等。 6. 总结核心观点和注意事项:用简洁明了语言概括,如提供法律建议时可总结出核心观点和注意事项,并使用特定连接词组织 Prompt。 7. 设定角色和任务目标:赋予 AI 明确的角色和任务目标,如专注于民商事法律领域且擅长特定方面的律师,以提升工作效率。 8. 讲清楚背景和目的:提问时梳理清楚背景信息和目的,如处理交通事故案件时说明案件事实和法规,帮助 AI 理解上下文提高准确性。 9. 学会提问:使用清晰具体语言,避免模糊表述,了解 AI 工作原理和限制,设计能提供有用答案的问题。 10. 拆解环节、切分流程:应用 AI 前细致拆解工作流程,将复杂任务分解为更小更具体环节,使 AI 执行更精确。 此外,FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术,能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,有可视化工作流编排工具方便创建复杂问答场景,具备开箱即用的数据处理和模型调用功能方便快速上手,可帮助企业构建智能客服、知识库搜索、文档生成等应用。相关资源有:。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-01-20
我想用AI做高质量高清图片,我应该怎么做
如果您想用 AI 做高质量高清图片,可以参考以下方法: 1. 了解默认分辨率:在 Stable Diffusion 中,AI 出图的默认分辨率为 512x512,用于商业通常不够。 2. 注意初始分辨率:初始分辨率不宜过高,例如 1600x840 的分辨率可能导致出图时间长和构图问题。 3. 运用高清修复:在文生图功能中有内置的高清修复(HiresFix)功能。将初始分辨率设置为 800x420 时,选择放大倍率为 2,可将分辨率放大至 1600x840。理论上放大倍率越高图片越清晰,但受电脑配置和显卡显存影响。放大算法如 RESRGAN 4x+Anime6B 常用于二次元绘图,写实类风格可选择 RESRGAN 4x+。 4. 固定图片种子值:先以 800x420 画一张图,获取其种子值并填入随机数种子以固定图片。 5. 底图制作:对于游戏截图升级为高质量图片,可在游戏内直接截图作为图生图的底层素材。为使底图清晰、拍摄自由,在 UE4 引擎游戏中可使用常用调整画质代码,如 r.ViewDistanceScale 10、r.ForceLOD 0、foliage.LODDistanceScale 10 等,并通过 ToggleDebugCamera 实现自由相机,使用 HighResShot 1920X1080(尺寸可调节)进行高品质截图。 通过这些技巧,您就可以得到足以商用的高清图片素材。
2024-12-25
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
有哪些开源或免费的AI模型管理平台,可以配置模型,管理Agent的
以下是一些开源或免费的 AI 模型管理平台及相关模型: 1. 智谱·AI: Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本,最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(、魔搭社区、始智社区、启智社区获取。 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本,上下文 token 数为 2K。可在、魔搭社区、始智社区、启智社区获取。 AgentLM7B:提出了一种 AgentTuning 的方法,开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct,基于上述方法和数据集,利用 Llama2 微调而成,上下文 token 数为 4K。代码链接为。 AgentLM13B:上下文 token 数为 4K,模型权重下载链接为。 AgentLM70B:上下文 token 数为 8K,模型权重下载链接为。 下载模型:智谱 AI 提供的所有开源模型均可以在以下平台进行下载:。 2. 通义千问: 本地部署 Qwen2.51M 模型:使用以下命令启动服务,根据硬件配置进行设置。参数说明: tensorparallelsize:设置为使用的 GPU 数量。7B 模型最多支持 4 个 GPU,14B 模型最多支持 8 个 GPU。 maxmodellen:定义最大输入序列长度。如果遇到内存不足问题,请减少此值。 maxnumbatchedtokens:设置 Chunked Prefill 的块大小。较小的值可以减少激活内存使用,但可能会减慢推理速度。推荐值为 131072,以获得最佳性能。 maxnumseqs:限制并发处理的序列数量。如果遇到问题,请参考相关内容。 与模型交互:可以使用以下方法与部署的模型进行交互:选项 1.使用 Curl;选项 2.使用 Python。对于更高级的使用方式,可以探索如之类的框架。QwenAgent 使模型能够读取 PDF 文件或获得更多功能。
2025-02-06
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
集文档管理、AI写作、资料搜索的AI大模型推荐
以下为您推荐一些集文档管理、AI 写作、资料搜索功能于一体的 AI 大模型: 1. RAG: 工作原理:就像超级智能的图书馆员,包括检索(从庞大知识库中找相关信息)、增强(筛选优化信息)、生成(整合信息给出连贯回答)。 优点:成本效益高、灵活性强、可扩展性好。 缺点:回答准确性相对不够。 相关网站:Metaso.cn(学术、研究)、So.360.com(生活、便捷)、Devv.ai(程序员、开发者)、Perplexity(付费、高质量)、Bing.com(通用)、Google.com(全球、精准)。 内幕:平均调用 9 次大语言模型,网络爬虫预先建立数据库,用便宜但推理弱的模型(免费版)。 2. 对于律师工作: AI 大模型擅长:信息检索与整理、模式识别与预测、自动化文档处理、多任务处理能力。 AI 大模型不擅长:法律解释与推理、理解道德和情感、创新或个性化的服务。 律师擅长:法律专业知识、沟通与谈判。 3. 沉浸式翻译:主打所有网页双语翻译、PDF 文档对照阅读,新功能可一键开启网页中 Youtube 视频的双语字幕。插件安装地址:https://immersivetranslate.com/ 4. Kimi:由月之暗面科技有限公司开发,最大特点是超长文本(支持最多 20 万字的输入和输出)处理和基于文件、链接内容对话的能力,能阅读并理解多种格式文件内容为用户提供回复。
2025-01-21