AI 对质量管理的帮助主要体现在以下几个方面:
人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:
鉴于AI正在快速发展并能够执行广泛的任务,作者认为对于某些项目,在AI技术进一步改进之前等待可能更加有利。这一点在那些耗时长且AI已有合理表现的任务中尤为显著,如写作小说或软件开发。该文章讨论了在构建和维护生产级大型语言模型(LLM)应用程序(如GitHub Copilot)中,评估指标的重要性。这些指标对于质量控制和防止重复故障案例至关重要。LLM应用程序的评估可以分为端到端和步骤/组件式评估。前者提供了整体质量感知,而后者有助于识别和减轻可能影响LLM应用程序整体质量的故障模式。该文章概述了适用于端到端和组件式评估的不同场景的评估指标。这些见解来自研究文献以及与其他LLM应用程序构建者进行的讨论。文章还提供了Python代码示例。语言模型(LLMs)如GPT-4是无监督任务的强大工具,但可能会出现“幻觉”,即生成似是而非的信息。为了缓解这一问题,可以采用以下几种策略:高级提示:这涉及在系统提示中提供清晰的指示,以避免传播错误或不可验证的信息。例如,使用一个提示来指导模型不要传播不正确的数据。少样本提示:向LLM提供少量特定示例以引导其回应,有助于它专注于主题和上下文。示例的质量至关重要,因为糟糕的示例可能导致更多幻觉。思维链式提示:鼓励LLM在最终答案之前生成推理步骤,可以通过逐步思考或提供推理示例来实现。然而,这可能会引入产生幻觉推理的风险。数据增强:当上下文超出模型窗口时,数据增强可以通过添加专有数据或外部工具/知识来帮助。技术包括:检索增强生成(RAG):将模型知识与检索系统结合起来,在实时中获取相关数据。工具集成:使用函数调用、API调用和其他工具来提高准确性,尽管这需要进行广泛测试和实验。
客户服务代表:在每家银行,成千上万的客户服务代表都必须对银行的产品和相关的合规要求进行痛苦的培训,以便回答客户的问题。现在想象一下,一个新的客户服务代表开始工作,他们可以使用已经经过过去10年所有银行部门客户服务通话训练的大语言模型。代表可以使用该模型快速生成任何问题的正确答案,并帮助他们更聪明地谈论更广泛的产品,同时减少培训他们所需的时间。现有公司会希望确保他们的专有数据和客户特定的个人身份信息没有被用于改进其他公司可能使用的通用大语言模型。新进入者将必须在如何启动数据集方面具有创意。贷款员:贷款员目前从近十个不同的系统中提取数据来生成贷款文件。一个生成式AI模型可以在这些系统的所有数据上进行训练,这样贷款员只需提供客户名称,贷款文件就会立即为他们生成。贷款员可能仍然需要确保100%的准确性,但他们的数据收集过程将更加高效和准确。质量保证:银行和金融科技公司的大部分质量保证工作都涉及确保完全符合众多监管机构的要求。生成式AI可以大大加速这个过程。例如,[Vesta](https://www.usevesta.com/)可以整合一个经过Fannie Mae销售指南训练的生成式AI模型,以便立即提醒抵押贷款员合规问题。由于许多监管指南都是公开的,这可能为新的市场参与者提供了一个有趣的入口。然而,真正的价值仍然将归属于拥有工作流引擎的公司。这些都是迈向一个世界的步骤,在这个世界里,Sally可以即时获得可能的抵押贷款。--Angela Strange,Alex Rampell,和Marc Andrusko