大模型的底座相关知识如下:
“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。
零跑汽车成立于2015年12月24日,是一家创新型的智能电动汽车品牌,零跑汽车自成立以来,始终坚持核心技术的自主研发,是拥有智能电动汽车完整自主研发能力以及掌握核心技术的整车厂家,2023年零跑已位列新能源品牌销量前三。从2017年起,零跑汽车便与阿里云展开深度合作。近日,零跑汽车已对OTA功能完成大规模升级,携手阿里云首次在座舱场景中增加“语音大模型”功能,用于聊天、基础知识问答、文生图等场景,提升用户驾驶体验。[heading1]阿里云的解决方案[content]阿里云通过百炼平台实现大模型落地零跑座舱,为用户的信息查询、车辆控制、娱乐与媒体服务、秒极生图等互动提供支持,提升用户的座舱体验。接入通义大模型实现开放式语音交互阿里云通义大模型帮助零跑汽车改变了传统的固定形式的问答模式,支持用户与零跑智能座舱进行开放式语音交互(闲聊场景),进行自然、连贯的多轮对话,可秒级响应,同时结合企业知识库和互联网知识库,满足用户多元化的需求。基于语音调用通义万相实现秒级作图零跑采用语音助手调用云端通义系列大模型,帮助用户通用语音调用通义万相实现文生图换壁纸,实现秒级作图,提升娱乐互动;支持语音查找如何使用汽车功能、规划路径等功能,丰富用户操作体验;知识库内容覆盖了零跑全系汽车知识和其他汽车品牌开放领域的信息。基于百炼构建大模型应用架构基于百炼平台,零跑汽车构建了开放、可扩展的大模型应用架构,基于统一的大模型底座,实现了零跑座舱大模型应用场景的快速扩展与迭代,降低大模型应用的创新门槛与成本。
首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧