利用 AI 写作可以参考以下步骤和方法:
要写出比人更好的文字,需注意:
但需记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
利用AI技术来辅助写作课题可以提高效率并激发新的创意。以下是一些步骤和建议:1.确定课题主题:明确你的研究兴趣和目标,选择一个具有研究价值和创新性的主题。2.收集背景资料:使用AI工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。3.分析和总结信息:利用AI文本分析工具来分析收集到的资料,提取关键信息和主要观点。4.生成大纲:使用AI写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。5.撰写文献综述:利用AI工具来帮助撰写文献综述部分,确保内容的准确性和完整性。6.构建方法论:根据研究需求,利用AI建议的方法和技术来设计研究方法。7.数据分析:如果课题涉及数据收集和分析,可以使用AI数据分析工具来处理和解释数据。8.撰写和编辑:利用AI写作工具来撰写课题的各个部分,并进行语法和风格的检查。9.生成参考文献:使用AI文献管理工具来生成正确的参考文献格式。10.审阅和修改:利用AI审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。11.提交前的检查:最后,使用AI抄袭检测工具来确保课题的原创性,并进行最后的格式调整。请记住,AI工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用AI进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。内容由AI大模型生成,请仔细甄别。
AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品-模型匹配和产品-市场匹配,且天花板高。AI写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版agent。定义好文字:好文字能引起人的生理共鸣与情绪,AI因预训练数据量大能学会引发共鸣,从而写出好文字。用AI写出好文字的方法:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过prompt中的描述与词语映射到预训练数据中的特定类型文本,往prompt里塞例子。对AI创作的看法:AI创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌AI是因其未改变多数人生活,或自身是受害者。作者期望AI能力进一步提升,改变每个人的生活。
我们在使用AI创作时,是以某个模型为基础进行调优的。要写出更好的文字,选好的模型是第一步。模型之间的能力差异非常之大,以至于很多时候对效果的影响是决定性的。如果使用的模型不适合这个任务,怎么调优都很费力,不如干脆换一个更好的直接使用。但是,这就涉及到评估方法。当时我们做了一个评估的测试,实际上,从科研的角度看,评估大模型的metric有很多,比如让大模型做小学数学题(GSM8K),这也是一种著名的评估数据集。这类数据集有固定答案,但写作任务压根没有标答,这在写作任务上就不管用了。从实际角度出发,我们不得不自己去想办法来评估这些模型的能力。这是我们当时的文档标题。在我们的写作课中,学员需要紧密结合大语言模型进行创作,这是一个非常特殊的任务:写作没有标准答案,何况这还是在中文语境下的,涉及人机交互的,具有强烈风格的网络小说类型短故事、短剧剧本创作。挑选模型的第一个重要指标是文风和语言能力:你如果去网上搜“ai味”,会看到大量文章教你怎么克服AI奇怪的文风,比如“首先、其次、再者、引人入胜”这种套话,一看就觉得是ai写的。而且这种ai味很难看,不是很让人有继续阅读的欲望。那么,我们要怎么去除ai味呢?实际上,我认为去除ai味是个伪命题。我们在谈到ai味的时候实际上讲的是GPT味。大家知道,在GPT刚出的时候,为了让模型听得懂人话,要做对齐,OpenAI雇了很多便宜的肯尼亚人给他们做数据标注。我有这样一个不负责任的猜想,这些便宜又可怜的肯尼亚数字劳工在写对齐用数据的时候,肯定写了不少首先、再者、最后这样的文字,说不定还有个文档要求他们这么做。