Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么监督AI被动的做出一系列违法的事情

Answer

监督 AI 被动做出违法事情可从以下方面考虑:

  1. 对于高风险人工智能系统,在入市前的设计应保证能实施人为干预。增加人为监督的原因包括:
    • AI 可能做出涉及道德和伦理问题的决策,如侵犯个人隐私、存在不公平偏见和歧视等,人类监督可预防相关道德风险。
    • 若 AI 产生错误决策甚至违法行为,因 AI 无法承担法律责任,责任由人类承担,所以需要人类监督以确保其行为合法。
    • AI 不能完全理解人类社会,在人类监督下能正确处理复杂的人类社会问题。
    • 高风险的人工智能系统往往需要更高程度的人为监督,以降低其对个人、环境和社会的损害,确保其运行符合人类社会的价值观和道德观。
    • AI 系统决策过程不透明,人类监督可要求其提供更多透明度和可解释性,便于理解和质疑决策。
    • 人为监督能促进 AI 的普及与发展,帮助建立公众信任,提高社会接受度。
  2. 像 OpenAI 这样的公司,无论如何重新设计产品以减少不当行为,未来的模型仍可能因足够聪明而难以被控制。若在确保模型安全性方面做得过度,可能削弱产品功能。
  3. 对于监管,OpenAI 的 Altman 虽将自己定位为监管拥护者,但也面临一些指责,如被认为玩弄监管程序以阻碍小型初创企业发展并给自己带来优势。不过他原则上赞同由国际机构监督 AI 的想法,但对一些拟议规则持有不同意见。OpenAI 拒绝相关批评,认为通过分析用户反应才能使未来产品符合道德规范。
Content generated by AI large model, please carefully verify (powered by aily)

References

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

2023年《AI法案》折衷草案要求,对于高风险人工智能系统,在入市前的设计应当保证能够实施人为干预。增加对人工智能人为监督的主要原因在于以下几个方面。首先,人工智能(AI)可能会做出涉及道德和伦理问题的决策,比如对个人隐私的侵犯、不公平的偏见和歧视等。人类不能放心地把这些决策交给人工智能,但如果有了人类的监督,则可以在充分利用人工智能的基础上预防相关的道德风险。其次,人为监督是降低人工智能风险的主要措施。如果AI产生错误决策甚至有违法行为,由于AI无法承担法律责任,责任的承担者只能是人类自己,所以人类需要监督AI以保证它们的行为符合法律规定。最后,尽管AI在很多领域都有显著的性能,但是它们并不能理解伴随着历史逐步形成的人类社会。AI必须在人类的监督下,以保证它们能够正确地处理这些复杂的涉及人类社会的问题。还有一点需要引起人们注意的是,风险较高的人工智能系统,往往需要更高程度的人为监督。高风险的AI系统可能在未经恰当处理的情况下,造成重大的个人、环境乃至社会的损害。人类监督可以确保在经验层面使AI系统的运行符合人类社会的价值观和道德观,最大降低高风险AI对人类社会的伤害。AI系统的决策过程往往是不透明的,这使得其决策的有效性和合理性难以判断。人类监督可以要求AI系统提供更多的透明度和可解释性,以便理解和质疑其决策。且人为监督也可以促进AI的普及与发展。高风险的AI系统本身可能会引发公众的恐慌和反感,人类监督能够帮助建立公众的信任,提高AI系统的社会接受度。[heading4](6)监管沙盒制度[heading4]

OpenAI 真正想要什么 | WIRED

矛盾在于,无论像OpenAI这样的公司如何孜孜不倦地对其产品进行重新设计,以减少深度伪造、错误信息和垃圾邮件犯罪等不当行为,未来的模型都有可能变得足够聪明,从而挫败那些发明了这项技术却仍然天真地认为自己能够控制它的头脑简单的人类的努力。另一方面,如果他们在确保模型安全性方面做得太过分,可能会削弱产品的功能,使其变得不那么有用。一项研究表明,安全性能有所提高的最新版GPT实际上比以前的版本更笨,在一些基本的数学问题上会出现错误,而以前的程序却能应对自如。(Altman说,OpenAI的数据并不能证实这一点。他问道:“那项研究不是被撤回了吗?没有”)。Altman将自己定位为监管的拥护者是有道理的;毕竟,他的使命是AGI,但要安全。批评者指责他在玩弄监管程序,这样一来,监管就会阻碍小型初创企业的发展,并给OpenAI和其他大型企业带来优势。Altman对此予以否认。虽然他原则上赞同由一个国际机构来监督AI的想法,但他确实认为一些拟议的规则,比如禁止使用数据集中的所有受版权保护的材料,构成了不公平的障碍。他明确表示,自己没有在一封广泛传播的敦促暂停开发AI系统六个月的信上签名。但他和OpenAI的其他领导人确实在一份只有一句话的声明上签上了自己的名字:“减轻AI带来的灭绝风险,应该与大流行病和核战争等其他社会规模的风险一样,成为全球的优先事项。”Altman解释说:“我说,是的,我同意。一分钟讨论。”正如一位著名的硅谷创始人所指出的:“一个行业举起手说‘我们将成为人类的终结者’——然后继续兴高采烈地开发产品,这种情况是很少见的。”OpenAI拒绝接受这种批评。Altman和他的团队表示,工作和发布尖端产品是应对社会风险的途径。只有通过分析ChatGPT和GPT-4用户对数百万条提示的反应,他们才能获得知识,使未来的产品符合道德规范。

Others are asking
有哪些好用的ai可视化工具
以下是一些好用的 AI 可视化工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,Google DeepMind 发布了一套可视化工具,可用于了解语言模型的内部工作原理,提取有意义的特征,揭示语言模型内部的激活状态。详细原理解释:https://xiaohu.ai/p/12186 链接:https://x.com/imxiaohu/status/1818825233778061560 。
2025-02-22
AI文档
以下是为您整理的关于 AI 文档的相关内容: 如何使用 AI 来做事: 越来越强大的人工智能系统正快速发布,如 Claude 2、Open AI 的 Code Interpreter 等,但似乎没有实验室提供用户文档,用户指南多来自 Twitter 影响者。 作者基于经验为学生和感兴趣的读者准备入门指南,侧重于如何选择正确工具做事,提前阅读相关任务类型可能有帮助。 Cursor 进阶: 模块结构上的使用,目的是让 AI 输出更多理解信息,使用后 AI 回复会随机带图便于查阅。 意在以各种形式提升 AI 对所做事情的理解,方便用户理解以持续控制 AI 产出。 有更新提示词限制 AI 产出的情况。 建议配置各种文档,如初始化文档、目录文档、关联模块文档、全局文档等。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,处理学术论文和专业文档时很有用。 一些流行的工具包括:Grammarly(提供排版功能改进风格)、QuillBot(改进文本清晰度和流畅性)、Latex(学术论文排版常用,有 AI 辅助编辑器和插件)、PandaDoc(文档自动化平台)、Wordtune(重新表述和改进文本)、Overleaf(在线 Latex 编辑器)。 选择合适工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-22
用AI建立本地的知识库,推荐哪些?
以下是为您推荐的用 AI 建立本地知识库的方法和相关软件: 1. AnythingLLM: 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 2. Obsidian 加 Cursor: 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。 希望以上内容对您有所帮助。
2025-02-22
有没有专业分析和修改简历的AI
以下是一些专业分析和修改简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,还有超级简历优化助手,能帮助用户优化简历提高求职成功率。您还可以查看这里获取更多 AI 简历产品:https://www.waytoagi.com/category/79 。 希望这些信息对您有所帮助,您可以根据自己的需要选择最适合您的工具。
2025-02-22
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
那深度学习是监督学习、无监督学习还是强化学习呢?又或者他们四个是并列的?
深度学习是一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习和强化学习。监督学习是使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习没有标签的数据,算法自主发现规律,经典任务如聚类。强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。所以深度学习与监督学习、无监督学习、强化学习不是并列关系,而是其应用的一种方式。
2025-01-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题
目前的情况来看,使用 AI 代替家教老师团队进行 1v1 辅导,包括出题、监督和整理错题等工作,虽然具有一定的可行性,但也面临一些挑战。 从出题方面,AI 可以根据学生当天学习的课程内容,利用其强大的数据分析和算法能力生成相关题目。但需要确保题目质量和针对性,能够准确覆盖重点知识点,并适应学生的学习水平。 在监督方面,AI 可以通过设定时间提醒等方式,督促学生按时完成任务。然而,它可能无法像人类教师那样敏锐地察觉学生的情绪和学习状态变化,及时给予鼓励和支持。 对于整理错题,AI 能够快速分类和分析错题,但在解释错题原因和提供个性化的学习建议上,可能不如人类教师那么深入和灵活。 总之,虽然 AI 可以在一定程度上辅助这些工作,但完全替代家教老师团队可能还不太成熟,或许可以将 AI 与人类教师相结合,以达到更好的辅导效果。
2024-11-18
抽象理解用户视角的半监督模式
半监督学习是一种机器学习模式,它结合了有监督学习和无监督学习的特点。在半监督学习中,模型可以同时使用标记数据和未标记数据进行训练。标记数据通常是指已经被人类标注或分类的数据,而未标记数据则是指没有被人类标注或分类的数据。通过使用半监督学习,模型可以利用未标记数据中的信息来提高其性能和泛化能力。 从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式。在传统的有监督学习中,模型需要大量的标记数据来进行训练,这通常需要人类专家进行手动标注,这是一个非常耗时和昂贵的过程。而在半监督学习中,模型可以利用未标记数据来进行训练,这可以减少对标记数据的需求,从而降低了数据标注的成本。此外,半监督学习还可以提高模型的泛化能力,因为模型可以从更多的数据中学习到更多的信息。 半监督学习的另一个优点是,它可以更好地处理现实世界中的数据。在现实世界中,大量的数据通常是未标记的,例如社交媒体数据、图像数据和音频数据等。通过使用半监督学习,模型可以利用这些未标记数据来进行训练,从而更好地处理现实世界中的数据。 总的来说,半监督学习是一种非常有前途的机器学习模式,它可以提高模型的性能和泛化能力,同时减少对标记数据的需求,从而降低了数据标注的成本。从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式,它可以更好地处理现实世界中的数据。
2024-05-06