Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么学习AI

Answer

以下是关于新手学习 AI 的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
  6. 对于中学生学习 AI 的建议:
    • 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。
    • 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
    • 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。
    • 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
    • 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

Others are asking
AI应用到哪些行业了
人工智能(AI)已经广泛应用于众多行业,以下是一些主要的应用领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,帮助投资者决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他应用场景: 教育领域,提供个性化学习体验。 农业方面,分析农田数据,提高农作物产量和质量。 娱乐行业,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。以上内容由 AI 大模型生成,请仔细甄别。
2025-01-18
将歌曲MP3转成视频形式的AI工具
以下是一些将歌曲 MP3 转成视频形式的相关 AI 工具及操作步骤: 工具推荐: 1. TME Studio:腾讯音乐开发的 AI 音频工具箱,常用功能为音频分离,可用于将人声和伴奏从歌曲中提取出来。 地址:https://y.qq.com/tme_studio/index.html/editor 2. Vocalremover:包含音频分离、变调、BPM 查询等功能,常用的是变调和 BPM 查询。建议在准备素材阶段,就将音频调整到所需调,并获取到 BPM。 地址:https://vocalremover.org/zh/keybpmfinder 实操步骤: 1. 准备音频素材: 使用干声转换,在软件中分别导入人声干声和伴奏,放在两个轨道上。干声是用来转成 MIDI 做 AI 演唱的。 注意,如果是男歌女唱或者女歌男唱,请在导入前先进行变调后再导入(不会变调的可参考工具推荐)。通常女声比男声高 5 个 key 左右,不绝对,大家根据听感测试调整即可。 2. 干声转换: 在转换之前,先将工程 BPM 设置为与歌曲一致(界面顶部,前面是 BPM 后面是拍数,把 BPM 修改为上述操作获取到的数字),这一步是为了后续微调的时候方便音符对齐节奏。设置完成后,将音频轨道的文件拖入到空白的歌手轨道,即可进行干声转换。 3. 选择歌手:软件左侧有歌手可以选择,长按拖动到歌手轨道的头像处即可切换歌手。
2025-01-18
哪些AI工具可以将歌曲MP3改成MV
目前尚未有直接将歌曲 MP3 转换为 MV 的成熟 AI 工具。通常,制作 MV 需要涉及视频编辑、特效处理、画面设计等多个复杂的环节,需要借助专业的视频编辑软件,如 Adobe Premiere Pro、Final Cut Pro 等,并结合创意和素材来完成。
2025-01-18
Noisee AI
以下是关于“Noisee AI”相关的信息: 在 AI 术语方面: “Noise”:噪声,属于 AI 领域的术语。 “Noise Distribution”:噪声分布,属于 AI 领域。 “NoiseContrastive Estimation”:噪声对比估计,属于 AI 领域。 在音乐方面: “Noise”:噪音,是指在音乐中故意加入的非音乐性声音或不和谐音效,用于创造特殊的氛围或表达情感。适用于噪音音乐、实验音乐、工业音乐等风格。编曲时可在乐曲中加入故意的噪音或不和谐音效,增强音乐的前卫感和独特性。 “Noise rock feedback”:噪音摇滚反馈,是指在噪音摇滚音乐中使用的电吉他反馈音效,具有强烈的噪音和失真效果。适用于噪音摇滚、实验摇滚、朋克摇滚等风格。编曲时可通过电吉他和效果器产生反馈音效,增强音乐的力量感和独特性。
2025-01-18
有哪些AI工具可以提取歌词
以下是一些可以提取歌词的 AI 工具: Suno:在做 hiphop 时存在咬字太清楚等问题,可通过替换拟音歌词和手动断句等方法解决部分问题。 AIMS:人工智能驱动的音乐相似性搜索和自动标记,适合以音乐发现为业务的人。 FeedForward:用于音频和声音目录的直观音频搜索引擎。 Aimi:发现将音乐从歌曲和播放列表束缚中解放出来的艺术家。 Utopia Music:每次播放公平报酬。 Musiio(被 SoundCloud 收购):使用人工智能帮助自动化工作流程。 niland(被 Spotify 收购):构建人工智能驱动的音乐应用程序。 cyanite:用于音乐标记和相似性搜索的人工智能。 musicube(被 SongTradr 收购):B2B AI 音乐元数据服务,例如自动标记、元数据丰富和语义搜索。 Musixmatch:基于歌词的音乐发现、推荐和搜索的算法和工具。 hoopr:人工智能驱动的引擎可帮助找到正确的配乐。 Pex:音乐识别和版权合规性,包括音频指纹、大规模翻唱识别。 SONOTELLER:AI 音乐分析,包括歌词摘要、主题提取和音乐特征。
2025-01-18
AI编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键: 打通学习与反馈循环,从“理解→实践→问题解决→加深理解”。 以 Hello World 为起点,验证环境、建立信心、理解基本概念。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS)。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。 强调人工主导,掌握每次可运行的小成果以实现持续提升。 原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动: 麦橘是哲学专业模型师,跨界教大家用 AI 做小游戏编程。 活动从上星期开始策划未预告。 麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。 麦橘使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。 麦橘介绍增量游戏的制作,包括主题选择、游戏机制(如点击、购买、升级等)和特点,还提到涅槃系统及其对收益的影响。接着讲述肉鸽游戏的特性,之后让 AI 做肉鸽游戏,过程中遇到问题并指出如何纠正 AI 的错误,最后着手做一个躲避 100 秒的新游戏。 3. 对于不会代码的人,20 分钟上手 Python + AI: 在 AI 帮助下可完成很多基础编程工作,但深入学习最好体系化了解编程及 AI,至少熟悉以下内容: Python 基础:包括基本语法(变量命名、缩进等)、数据类型(字符串、整数、浮点数、列表、元组、字典等)、控制流(条件语句、循环语句)。 函数:定义和调用函数、参数和返回值、作用域和命名空间。 模块和包:导入模块、使用包。 面向对象编程(OOP):类和对象、属性和方法、继承和多态。 异常处理:理解异常、异常处理。 文件操作:文件读写、文件与路径操作。
2025-01-18
如何投喂素材学习
以下是关于投喂素材学习的方法: 1. 推特博主的英语老师制作了一个 GPT 工作流,基于个人日常需求生成定制素材。 2. 具体使用方法: 先把特定的 prompt 喂给 ChatGPT(建议开一个新的对话专门用来学习英文)。 ChatGPT 会扮演您的美国好朋友,当您输入英文和中文表达,它会返回更地道的表达,并对俚语部分加粗,以助学习和记忆(如将“将 App 提交到应用商店,我用了 send out,ChatGPT 改成了 push”)。 针对您发送的话题,ChatGPT 会举一反三,结合欧美流行内容给出更多例子,帮助您更好理解和记忆(如 ChatGPT 提供了一个美剧更新的例子,教会新表达 buzz)。 当您输入“Hey GPT,run the end of day task.”,ChatGPT 会输出当天的对话回顾,进行复习,并建议 3 个推荐的任务,强化记忆。 3. 建议使用方式: 开一个窗口,复制 prompt。 手机端打开这条历史记录。 点右上角的🎧耳机图标,开始打电话。 打电话既能练口语又能练听力。 结束之后看回顾,有助于阅读。 群友也写了一个类似的版本,并在讯飞上做了尝试,效果不错。
2025-01-18
深度学习
深度学习是一个源于新方法和策略的领域,旨在克服梯度消失问题以生成深层非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流以训练深层结构,此后人们对深度学习的兴趣日益增长。 深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。长短时记忆循环神经网络允许网络收集过去几百个时间步的活动以做出准确预测,自 2013 年以来其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 在分层特征学习中,提取多层非线性特征传递给分类器进行预测。由于无法从几层中学习复杂特性,需叠加深层次非线性特征,有研究表明人脑也有类似机制。虽然分层特征学习在深度学习之前就被使用,但此前的架构面临梯度消失问题,导致性能较差。 Geoffrey Hinton 一步步把“深度学习”从边缘课题变成了 Google 等网络巨头仰赖的核心技术。早在 1960 年代高中时期,Hinton 就对大脑工作原理的相关理论着迷,此后在求学期间继续探索神经网络。经过三十多年的努力,深度学习成为学术界热门课题,Hinton 和包括 Yann LeCun、Yoshua Bengio 在内的团队在互联网上大有名气,他们为 Google、Facebook 等工作,使用深度学习技术改进语音识别、图像标记等在线工具,众多网络巨头也对其着迷。在剑桥大学学习期间,Hinton 发现科学家们未真正理解大脑,神经如何学习和计算是他关心的问题。
2025-01-18
学习AI的步骤
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,雪梅 May 的学习经验表明: 学习路径可以是迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。 特别是学习 Coze 的路径:输入→模仿→自发创造。 虽然费曼学习法告诉我们,学习最好的方式是教会别人,但一开始学习 AI 时,自学和输入为主也是可行的。如果能量和勇气足够,可以更早地开始输出倒逼输入。一切弯路都值得走,不需要给自己太大压力,只要迈开脚步,就是进步。
2025-01-18
我是小白,想要学习AI,从哪开始
对于小白想要学习 AI,您可以从以下几个方面开始: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,比如学习模式可以是输入→模仿→自发创造。在学习过程中,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且,学习资源大多是免费开源的。需要注意的是,学习状态很重要,能学多少算多少,不必有心理压力。
2025-01-17
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-17
学习AI编程
以下是关于学习 AI 编程的一些建议和相关内容: 1. 借助 AI 学习编程的关键: 打通学习与反馈循环,从 Hello World 起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。 使用流行语言和框架,如 React、Next.js、TailwindCSS。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。要记住,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文: 2. 齐码蓝的观点: 作者构建了一个 AI 编程 Master GPTs,您可以让它根据不同的对话 hash id 进行 git 命令式操作,如 branch、tag、fork 等。例如,根据对话 ID 创建分支、打 tag 等。用 GPT4 构建了个 GPTs:AI 编程 Master(文末有链接)。 3. 和 Cursor AI 一起学 Python 编程: 课程内容包括 Python 是什么、Cursor 使用、notebook 远程编程。 熟悉 Cursor 界面,包括安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能。 编写第一个程序,使用 Cursor 编写一个打印“你好,世界!”的简单程序,体验 AI 辅助功能,如代码自动补全和错误提示。 使用进行远程编程,包括注册和登录,帮助注册 Bohrium 账户并登录在线编程平台,在线编写和运行代码,在 Bohrium 上编写同样的“你好,世界!”程序,演示如何在云端运行代码并查看输出。 教学目标是了解 Python 对于人文学科的意义,掌握 Cursor 和 Jupyter Notebook 编程环境的基本使用,能够在本地和云端运行简单的 Python 代码,体验 AI 技术如何辅助编程和学习。
2025-01-17