Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何成为AI训练师

Answer

成为 AI 训练师需要以下几个方面的努力:

  1. 扎实的基础知识:就像医学生从化学和生物学基础课程开始一样,AI 训练师也需要掌握相关的基础知识,例如数学、统计学、计算机科学等。
  2. 领域专业知识:针对特定的应用领域,如医疗保健,需要深入了解该领域的专业知识,包括原理、流程和实践经验。
  3. 学习方式:通过正规的学校教育和实践学徒的方式,从该领域最出色的实践者那里学习,积累经验和直觉。
  4. 模型训练方法:不应仅仅依靠大量的数据和生成模型,而是采用堆叠模型的方式进行训练,例如先训练生物学模型,再添加特定领域的数据点。
  5. 持续学习和创新:鉴于 AI 的发展特性,要不断学习新的技术和方法,探索更有效的训练方式。

同时,利用 AI 进行教育和自学也是提升自身能力的途径,但要注意对关键数据进行核实,避免 AI 产生的幻觉导致错误。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

如何使用 AI 来做事:一份带有观点的指南

但更令人兴奋的是,使用人工智能来帮助教育的可能性,包括帮助我们学习。[我写过关于人工智能如何用于教学](https://www.oneusefulthing.org/p/assigning-ai-seven-ways-of-using),并[帮助教师的生活更轻松,课程更有效](https://oneusefulthing.substack.com/p/using-ai-to-make-teaching-easier),但它也可以用于自学学习。你可以要求人工智能解释概念并获得非常好的结果。这个[提示是一个很好的自动导师](https://twitter.com/emollick/status/1669434927761313807?s=20),可以[在这里](https://chat.openai.com/share/ec1018ec-1d86-4160-b587-354253c7d5cb)找到一个[直接链接来激活ChatGPT中的导师](https://chat.openai.com/share/ec1018ec-1d86-4160-b587-354253c7d5cb)。因为我们知道人工智能可能会产生幻觉,所以明智的做法是(小心!)根据其他来源仔细检查任何关键数据。

Others are asking
生成图片用哪款AI工具
以下是一些生成图片的 AI 工具: 1. 图生图工具: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,能将上传的照片转换为芭比风格,效果好。 2. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 3. 文生图工具: DALL·E:OpenAI 推出,可根据输入的文本描述生成逼真的图片。 StableDiffusion:开源,能生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和用户友好界面设计受欢迎,在创意设计人群中流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多文生图工具。但需注意,这些工具可能存在一些局限,如偶尔性能不稳定、生成内容不当等问题。
2025-01-13
用AI如何变现
以下是一些关于用 AI 变现的方式: 1. 开发智能体:例如像 May 用 coze 捏了一个口语陪练 bot,并在豆包 APP 上随时可用。可以通过提供独特的智能体服务来实现变现。 2. AI 写作服务: 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等,并选择合适的 AI 写作工具。 准备阶段:学习并实践 AI 写作技术,构建团队。 商业模式构建:确定服务内容,如提供论文、报告、文案等直接写作服务,制定质量控制标准。 运营与推广:在淘宝等电商平台开设店铺展示并销售写作服务,建立写作培训社群,通过社交媒体和线下活动进行品牌和社群建设,与其他团队合作共同开发新项目。 项目优化与发展:持续关注 AI 技术进展,根据市场需求拓展新服务和产品,收集客户反馈优化服务。 3. 艺术创作:生成式 AI 产品可服务于各种用例,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。例如 Lensa 应用,生成式 AI 工具已在多种媒介中推出。
2025-01-13
什么AI可以帮助我优化PPT的排版
以下是一些可以帮助您优化 PPT 排版的 AI 工具和相关思路: 1. 爱设计:操作方式基于 Markdown 语法的内容来完成 PPT 生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。下载后的 PPT 可按照公司要求自行删改内容以优化字体、图片等元素。 2. Gamma、AiPPT、iSlide、创客贴、WPS 等:这些工具对文本的多级排列有更高要求,便于摒弃呆板单调的表现形式,一键切换多元模版。熟练使用有助于提高效率,最终的排版效果可由操作者决定。 3. WPS AI:可以帮助生成 PPT 大纲并进行优化,还能根据您的要求修改主题配色和字体。 您可以根据自己的需求选择适合的工具来优化 PPT 排版。
2025-01-13
如何学习 ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-13
AI 辅助教案设计
以下是关于 AI 辅助教案设计的相关内容: 一、PPT 生成工具及相关内容 1. 剪映:图文成片(只需提供文案,自动配图配音)。 2. BibiGPT:可以支持小红书、B站等网站视频的归纳总结,还可以提问互动,答案还会附上对应的视频节点。推荐链接:https://bibigpt.co/r/Bm63FV 、https://bibigpt.co/ 。 3. Kimi.ai:思维导图图片转 PPT。 4. AI 辅助 PPT 的原理和作用: 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT,是让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容。 有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。 二、AI 在教学设计中的应用 1. 支持教学目标设定和教学活动设计,使教学更加个性化、精准和高效。 2. 能根据不同学生的学习需求,提供差异化教学内容,提高学习效果。 3. 提供在教学设计中整合 AI 的具体方法和步骤,如利用 AI 工具进行学情分析、智能推荐等。 三、智慧课程相关 1. 概念示意图生成工具:http://Napkin.ai 。 2. 清华的探索:包括 AI 如何协助教师、教师提供数字资源、智慧课程 AI 助教(线上助教一对一)、如何手搓和优化 AI 助教、设计和实现在线助教的功能、自建专用平台(网站)等。 3. 上海交大案例:写作辅导、风景园林简史。 4. 武汉大学 AI 助教“珞珞”与“珈珈”,“人在回路”的原因:现阶段 AI 能力只能达到 Level 2,只能作为“副驾”,作用包括解决 AI 系统的局限性,提高系统准确性和可靠性;持续优化系统,提升学习体验;伦理和价值观把控,保障教学安全。 5. 人机智慧学习协作框架:包括助理、职责、任务、监管、沟通、指导负责任等,把 AI 想象成您的助理/伙伴/下属,如 CoPilot 。 四、生成式 AI 对课件制作与微课生成的影响 带来颠覆性变革。
2025-01-13
对自媒体创作有用的AI软件或工具
以下是一些对自媒体创作有用的 AI 软件或工具: 1. AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity。 2. 图片处理:DallE、Leonardo、BlueWillow、Midjourney。 3. 版权写作:Rytr、Copy AI、Wordtune、Writesonic。 4. 设计:Canva、Clipdrop、Designify、Microsoft Designer。 5. 网站搭建:10Web、Framer、Hostinger、Landingsite。 6. 视频处理:Klap、Opus、Invideo、Heygen。 7. 音频处理:Murf、LovoAI、Resemble、Eleven Labs。 8. SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope。 9. Logo 设计:Looka、LogoAI、Brandmark、Logomaster。 10. 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple。 11. 自动化工具:Make、Zapier、Bardeen、Postman。 此外,中文的内容仿写 AI 工具推荐: 1. 秘塔写作猫:https://xiezuocat.com/ 写作猫是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章的各类属性,为文章的正负情感、情绪强度和易读性打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是得力的智能写作助手,能处理心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 智能创作助手 Effidit 由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别。)
2025-01-13
想开发一套针对小学生的AI寒假训练营,教一些简单的代码之类的 你可以给我推荐一些让小朋友体验的AI工具吗
目前针对小学生的 AI 工具,以下几种可能较为适合他们体验: 1. Scratch:这是一款图形化编程工具,通过拖拽积木块的方式就能创建程序,非常直观易懂,有助于培养孩子的逻辑思维和创造力。 2. Code.org:提供了丰富的编程课程和项目,包括简单的代码编写,界面友好,适合初学者。 3. Tynker:具有趣味性的编程学习平台,有很多小游戏和项目可以让孩子在玩中学习编程知识。 需要注意的是,在让小朋友使用这些工具时,要给予适当的指导和监督,确保他们能够正确理解和使用。
2025-01-11
增量预训练
以下是关于增量预训练的相关内容: Atom 系列模型的预训练: Atom 系列模型包含 Atom7B 和 Atom13B,基于 Llama2 做了中文能力的持续优化。 采用大规模的中文数据进行持续预训练,数据来源广泛,包括百科、书籍、博客、新闻、公告、小说、金融数据、法律数据、医疗数据、代码数据、专业论文数据、中文自然语言处理竞赛数据集等,并对数据进行过滤、打分、去重,筛选出超过 1T token 的高质量中文数据持续加入训练迭代。 针对 Llama2 模型的词表进行深度优化,扩展词库至 65,000 个单词,提高中文编码/解码速度约 350%,扩大中文字符集覆盖范围,包括所有 emoji 符号。 默认支持 4K 上下文,利用位置插值 PI 和 Neural Tangent Kernel(NTK)方法,经过微调可将上下文长度扩增到 32K。 GPT 助手的预训练: GPT 以完全随机的权重开始,随着训练时间增长,输出会越来越连贯和一致。 预训练阶段占用了训练计算时间和浮点运算的 99%,是所有计算工作主要发生的地方。 收集大量数据,如 Common Crawl、C4、GitHub、维基百科、图书、ArXiv、StackExchange 等,按照一定比例采样形成训练集。 在训练前需进行预处理步骤 Tokenization(分词/标记化),将原始文本翻译成整数序列。
2025-01-10
大模型训练是什么
大模型训练是一个复杂的过程,通俗来讲,就是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够进行文本生成、推理问答、对话、文档摘要等工作。 其过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量的计算资源,如大量的 GPU。 2. 确定教材:大模型需要海量的数据,通常几千亿序列(Token)的输入是基本标配。 3. 找老师:选择合适的算法来讲述“书本”中的内容,让大模型更好地理解 Token 之间的关系。 4. 就业指导:为了让大模型更好地胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。 一般来说,大模型训练有以下关键步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言的基本结构和常识,具备文本补齐能力,将人类的知识通过向量化的方法转换,从而获得基础的语言模型。 2. 清洗出好的数据。 3. 指令微调:模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。 4. 对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望,包括处理文化、道德等方面的细节。 虽然具体的实现细节可能是各公司的机密,但大体上,这些步骤共同构成了构建一个高效、实用的大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖于社区的贡献和集体智慧,而闭源模型则通常由企业投入大量资源进行开发。 需要注意的是,在面对大模型训练这样的新技术和概念时,要保持开放和谨慎的态度,深入了解其技术背景、工作原理以及在实际应用中的作用和影响,避免形成错误的观念。同时,所有工程实现的东西都需要做很多技术的折中,不要过分美化这个过程。
2025-01-10
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
如何学习AI并成为一个产品经理
以下是关于如何学习 AI 并成为一个产品经理的相关内容: 一、AI 产品经理的层级划分 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级 有两个路径,一个是技术研究路径,一个是商业化研究路径。 对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,最好是同一个人。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用 有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 二、AI 产品经理的要求 1. 懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 关注场景、痛点、价值。 三、学习资源与案例 1. 可以参考《雪梅 May 的 AI 学习日记》,其中提到用 ComfyUI 和 Cursor 做应用,感受是二者结合可以制作个人的 AI 产品,是一个可学习的方向。 2. 最近的招聘信息中对 AI 产品经理的职责描述和任职要求: 职责描述:负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理;通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略;制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行;提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求:本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑;具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先;在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验;对客户需求具有高度敏感度,熟悉竞品分析、定价策略。
2025-01-04
我该如何学习提示词技术,编写清晰、精确的指令,更好地引导 AI 工具产生所需结果,使其成为工作中的得力助手?
以下是关于如何学习提示词技术的一些建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出的质量。 2. 学习构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 避免 AI 幻觉的技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献;询问科学事实时,要求引用已发表的科研论文;询问法律条款时,要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程;询问代码功能时,要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时,指定名人的姓名和相关主题;询问新闻事件时,指定事件的时间范围和相关关键词。 4. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中获取。 5. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 6. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 7. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新的研究成果和方法论。 总之,精心设计的提示词能最大限度发挥语言模型的潜力,通过多实践、多学习、多总结,最终可以掌握提示词技术的窍门。
2024-12-31
我想让ai在学习、生活、工作方面成为我的左膀右臂以大大提高我的效率,我该怎么做?
为了让 AI 在学习、生活、工作方面成为您的得力助手并显著提高效率,您可以参考以下建议: 工作方面: 1. 快速掌握生成式人工智能的基本概念和潜在影响,重点理解其对工作方式和行业格局的革新,无需深入技术细节。 2. 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中,通过实践学习其优势和局限性,将 AI 工具与专业知识和创造力相结合。 3. 学习提示词技术,编写清晰、精确的指令,更好地引导 AI 工具产生所需结果,使其成为工作中的得力助手。 4. 探索构建智能体(AI Agents),为工作赋予特定角色和任务,协同工作以提高效率和创新能力。 学习方面: 英语学习: 1. 利用智能辅助工具,如 Grammarly 进行写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 运用自适应学习平台,如 Duolingo 为您量身定制学习计划,提供个性化学习内容和练习。 4. 借助智能对话机器人,如 ChatGPT 进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 使用自适应学习系统,如 Khan Academy 提供个性化数学学习路径和练习题,精准推荐。 2. 利用智能题库和作业辅助工具,如 Photomath 提供数学问题解答和解题步骤。 3. 运用虚拟教学助手,如 Socratic 解答数学问题、提供教学视频和答疑服务。 4. 参与交互式学习平台,如 Wolfram Alpha 的数学学习课程和实践项目,进行数学建模和问题求解。 注意事项: 在提升效率的同时,要警惕过度依赖,避免 AI 主导内容创作。工作流需要不断打磨完善,欢迎分享实践经验,共同进步。 希望以上建议能为您搭建 AI 工作流提供思路,祝您早日让 AI 成为得力助手,提高效率,提升幸福感!
2024-12-31
怎么成为一个提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,其目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 1. 教育类:自动优化 Prompt,作者为 JackeyLiu,分类为代码,协助用户完成提示词优化。熟悉,将常规的 Prompt 转化为符合框架的优秀 Prompt,并让 chatGPT 输出符合预期的回复。 2. 商业类:自动优化 Prompt,作者为 JackeyLiu,分类为代码,协助用户完成提示词优化。熟悉,将常规的 Prompt 转化为符合框架的优秀 Prompt,并让 chatGPT 输出符合预期的回复。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2024-12-22
我需要一个工具 让我能够把看到的资料汇总到里面,慢慢的他就成为了我的一个智能助理,但凡我阅读过的东西,只要我能想到一点点相关内容,都能通过这个工具在里面找到汇总答案,同时还能链接到原来的文章或知识点,有这样的AI工具么
以下是为您整理的相关信息: 目前有一些工具和方法可以满足您的需求。例如: 1. 在“让机器理解世界/GPT 时代人类再腾飞·译者序”中提到,人类要学会深刻理解 AI 系统的工作方式与它的边界,AI 可以作为伙伴帮助我们充分发挥潜力。 2. 7 月 16 日 Jimmy Wong &吕立青的相关内容中,提到可以通过输入端输入不同模态的内容,包括音频、文本、视频等并消化,在输出端借助自己的知识或让 AI 助理基于收藏或保存的知识点来完成某些事情,如写文章、输出代码等。 3. 在“VIRTUAL”中,提到可以用 AI 搜索引擎如 felo.ai/search 搜索并归纳内容,用 AI 可视化工具 napkin.ai 转成图示。还提到可以像编程一样预先写好咒语(prompts),将日常工作中固定输入输出的部分写成“智能体”并不断迭代优化。很多 AI 网站都可以创建“智能体”,您可以手搓各种机器人为您工作,如出试题、找资料、画插图、专业翻译等,还能设置“常用语”“小助手”“bot”,如 Kimi.ai 。 综合来看,目前有多种方式和工具可以帮助您实现将资料汇总并成为智能助理的需求。
2024-12-14
想成为数据科学家,学习和训练过程是什么
成为数据科学家的学习和训练过程通常包括以下步骤: 1. 收集数据:这是基础步骤,为后续的分析和模型训练做准备。 2. 分析数据:需要迭代多次以获得正确的见解。 3. 提出假设与行动:不断调整,并分析新的阶段数据。 在数据科学项目中,还需注意以下方面: 1. 每个工作职能都要学习如何使用数据,数据科学家和人工智能在多个领域均有重要作用,前者通过数据做决策,后者通过数据完成训练并形成输入输出的程序。 2. 选择人工智能项目时,要找到 AI 可以完成且在商业领域能运用的项目,召集由人工智能专业与业务领域专家组成的团队。具体包括: 思考可以自动化的任务而非岗位,细化可自动化任务。 思考驱动商业价值的核心。 思考商业领域的主要痛点。 破除数据迷信,认识到更多数据基本没坏处,数据能让某些商业模式具有护城河,但少量数据集也可能取得进展。 对项目进行尽职调查,包括技术方面(确定 AI 系统可达到理想表现、所需数据量及可获得量、开发时间表和所需人员)和商业方面(降低成本、提升效率、增加收入、推出新业务或产品,使用电子财务模型定量估算价值),还要考虑购买还是建造的问题,现实中人工智能项目可外包,数据科学一般内部成立。 4. 与人工智能团队合作时,为项目提供验收标准,如检测废品成功率 95%,需另准备测试数据集,标准尽量以数据衡量,由于数据太少、技术不成熟、数据标注错误、模糊标签等原因,验收标准基本不可能 100%正确。
2024-12-10