Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Agent是什么?

Answer

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。

从产品角度来看,Agent 可以有特定的身份、性格和角色。例如,它可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可为其设计背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。

在结合大型语言模型(LLM)的情况下,LLM Agent 是指结合了 LLM 和自主智能体特性的系统。它能够利用 LLM 的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文和长期记忆用于存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助感知环境和执行决策)、行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。

在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆和长期记忆)、工具使用(调用外部 API 获取额外信息)等关键部分。

Content generated by AI large model, please carefully verify (powered by aily)

References

Roger:从产品角度思考 Agent 设计

我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。你可以把Agent想象成一个具有特定目标和行为能力的智能角色,它们可以根据环境变化做出相应的决策和反应。[heading3]LLM Agent[content]LLM Agent是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统。这种系统能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。大语言模型-Agent框架[heading3]LLM Agent组成部分:[content]1.规划(Planning)定义:规划是Agent的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。实现方式:通过使用大型语言模型的提示工程(如ReAct、CoT推理模式)来实现精准任务拆解和分步解决。2.记忆(Memory)定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。3.工具(Tools)定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,例如使用插件解析文档、生成图像等。4.行动(Action)定义:行动是Agent将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

Others are asking
AI agent
以下是关于 AI Agent 的相关信息: 当您经常使用各种 AI 聊天工具但觉得不够用时,希望大模型搭配更多工具和能力以提供更稳定服务和输出,就可以关注 AI Agent 板块。 百宝箱是来自阿里系的一款 AI Agent 相关产品。登录链接为:https://tbox.alipay.com/proabout 。如果您是不会写代码、对 AI Agent 毫无使用经验的小白,或者看到宣传想尝试百宝箱的使用方法和能力,这篇分享可能对您有帮助。 测试百宝箱的原因是作者所在的小队伍“来都来了”参加比赛,发现其大力搞比赛所以一试究竟。 百宝箱当前大模型随便用,如通义千问·Max、月之暗面、智谱、百灵等,且统统免费。 在文旅和传媒方面,支付宝为百宝箱提供了天然渠道。作者刚好考虑在这方面探索,试用时看到相关标签栏露出,期待其带来渠道和流量。由于刚推广,力度较大。 此外,为您提供一些生成式人工智能的相关链接: Ask a Techspert:What is generative AI? https://blog.google/insidegoogle/googlers/askatechspert/whatisgenerativeai/ Build new generative AI powered search&conversational experiences with Gen App Builder: https://cloud.google.com/blog/products/aimachinelearning/creategenerativeappsinminuteswithgenappbuilder What is generative AI? https://www.mckinsey.com/featuredinsights/mckinseyexplainers/whatisgenerativeai Google Research,2022&beyond:Generative models: https://ai.googleblog.com/2023/01/googleresearch2022beyondlanguage.htmlGenerativeModels Building the most open and innovative AI ecosystem: https://cloud.google.com/blog/products/aimachinelearning/buildinganopengenerativeaipartnerecosystem Generative AI is here.Who Should Control It? https://www.nytimes.com/2022/10/21/podcasts/hardforkgenerativeartificialintelligence.html Stanford U&Google’s Generative Agents Produce Believable Proxies of Human Behaviors: https://syncedreview.com/2023/04/12/stanfordugooglesgenerativeagentsproducebelievableproxiesofhumanbehaviours/ Generative AI:Perspectives from Stanford HAI: https://hai.stanford.edu/sites/default/files/202303/Generative_AI_HAI_Perspectives.pdf Generative AI at Work: https://www.nber.org/system/files/working_papers/w31161/w31161.pdf
2025-01-10
知识库中有关于Agent的金融应用
智能体(Agent)在各种应用中扮演重要角色,以下是一些典型的应用领域: 1. 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 4. 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 智能体可以根据其复杂性和功能分为几种类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。 从历史角度来看,随着大航海时代及全球贸易的兴起,“Agent”的角色在商业领域变得日益重要。16 至 17 世纪间,贸易代理和公司代理商开始在全球范围内进行商品交易,如荷兰东印度公司的代理人。18 至 19 世纪工业革命期间,“Agent”的职能进一步拓展到保险、房地产等新兴行业。此外,在 19 世纪,政府及情报领域也开始广泛使用“Agent”,比如情报特工和便衣警察,在维护国家安全与社会秩序方面发挥了不可或缺的作用。 在 20 世纪至 21 世纪的现代社会中,“Agent”一词涵盖了多种职业角色,尤其在娱乐和体育行业中,它指的是艺人经纪人和运动员经理等职位。这些专业经理人负责安排试镜、进行合同谈判以及规划职业生涯,确保客户能在竞争激烈的行业中获得成功。此外,“Agent”还包括劳务代理和招聘代理(猎头)。劳务代理提供劳动力匹配服务,帮助求职者找到合适的工作,并为雇主提供所需的人才,如劳务派遣公司将临时员工派遣到需要额外支持的企业单位。而猎头则专门为公司招募高技能或高级管理职位的专业人士,通过筛选简历、安排面试并评估候选人来帮助企业找到最合适的员工。凭借深厚的行业知识与广泛的联系网络,这些猎头为企业与顶尖人才之间搭建了重要桥梁。 从词源和词的历史变迁中,大家就能看到,“Agent”这个词本身就具有行动的含义,到了后期又附加了“替身”的意思。且无论哪个领域,“Agent”都多数情况下都在指:“拥有行动的替身,都是替代他人做某事“。 设计和实现一个智能体通常涉及以下几个步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 智能体在现代计算机科学和人工智能领域是一个基础且重要的概念。它们通过自主感知和行动,在广泛的应用领域中发挥重要作用。从简单的反应型系统到复杂的学习型系统,智能体技术的不断发展和应用正在改变我们的生活方式和工作模式。
2025-01-09
ai agent 框架有哪些
目前常见的 AI Agent 框架主要有以下几种: 1. LangChain 的 LangGraph:通过简化标准底层任务,如调用 LLM、定义和解析工具、链接调用等,使入门变得容易,但可能创建额外抽象层,增加调试难度。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet:拖放式 GUI 的 LLM 工作流构建器。 4. Vellum:用于构建和测试复杂工作流的 GUI 工具。 此外,行业里常用于为 LLM 增加工具、记忆、行动、规划等能力的框架是 LangChain,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。AutoGPT 被描述为使 GPT4 完全自主的实验性开源尝试,也是一种重要的框架。但需要注意的是,当前大多数代理框架都处于概念验证阶段,还不能可靠、可重现地完成任务。
2025-01-08
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
小红书配图建议的 Agent
以下是为您提供的关于小红书配图建议的相关内容: 彬子在基于 ComfyUI 做油管封面的分享中提到,他是 ComfyUI 新人,之前更多使用 Coze 做 Agent,涉及绘图功能会调用 Coze 的图像流。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域的领先水平,但大多数同学专注其一领域精进,好处是能做出落地的 Agent,短板是依赖平台或社区弥补。例如,熟悉 Coze 的同学开发助理类 Bot 便捷但出图自由度不高,熟悉 ComfyUI 的同学能完成高水平图像、视频流但流程中 Agent 含量不高。只要从擅长的阵地多迈出一步,就能更好把控在一个 Agent 中如何设计和运用各种节点。 彬子还在 2024 AI 年度小记中提到,其小红书主页为 ,发小红书除记录外希望找到更多探索的朋友,会有企业人员咨询或求助,但当时个人面向企业挣钱难,大企业决策链长,小企业信息化和文档沉淀不足。7 8 月小红书更新进入瓶颈,后参与 WaytoAGI 社区的 Coze 活动。 此外,还有教程“11_小暑”,作者为三思,可复制版本:https://mp.weixin.qq.com/s/mqT00X85iCR27KFiZazUoQ ,访问 ,并推荐特别适合做夏日的 lora—夏日白莲/咖菲猫咪,https://www.liblib.art/modelinfo/c7990c5616054e28825a44378637d71c?from=personal_page ,但这套效果不稳定,需更新调整关键词和参数。
2025-01-08
最近Agent方面的场景案例
以下是一些关于 Agent 方面的场景案例: 1. 吴恩达最新演讲中提到的四种 Agent 设计范式: Reflection(反思):例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,通过反复操作完成自我迭代,虽不能保证修改后代码质量,但效果通常更好。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 Planning(规划):属于比较新颖且有前景的方式。 Multiagent(多智能体):也具有发展潜力。 2. Ranger 文章中的相关内容: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”通常是 LLM 或大模型,通过为其增加工具、记忆、行动、规划这四个能力来实现。 行业里主要用到的是 langchain 框架,它在 prompt 层和工具层完成主要的设计,将 LLM 与 LLM 以及 LLM 与工具进行串接。 3. 从词源和历史变迁来看: 在不同时期,“Agent”在商业、政府、情报、娱乐、体育等领域都有重要角色,涵盖贸易代理、公司代理商、情报特工、艺人经纪人等多种职业。 “Agent”一词具有行动和替身的含义,多数情况下指“拥有行动的替身,替代他人做某事”。
2025-01-07