Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

superclue 在国内的评测里面什么地位,国外对标的评测是什么

Answer

在国内的评测中,SuperCLUE 是大模型时代 CLUE 基准的发展和延续,聚焦于通用大模型的综合性测评。在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。

SuperCLUE 是中文语言理解测评基准 CLUE 的发展,发起于 2019 年,陆续推出了多种广为引用的测评基准。它根据多年的测评经验,构建了多层次、多维度的综合性测评基准。SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低评测过程中的人为评估的不确定性。

国外对标的评测没有明确提及。

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

国内外差距依然明显。GP T 4 T u r b o总分90.63分遥遥领先,高于其他国内大模型及国外大模型。其中国内最好模型文心一言4.0(API)总分79.02分,距离GPT4-Turbo有11.61分,距离GPT4(网页)有4.9分的差距。必须看到的是,过去1年国内大模型已经有了长足的进步。综合能力超过G P T 3.5和Gemini-Pro的模型有11个,比如百度的文心一言4.0、阿里云的通义千问2.0和Qw e n 72B-Chat、OPPO的AndesGPT、清华&智谱AI的智谱清言、字节跳动的云雀大模型等都有比较好的表现。国外模型平均成绩VS国内模型平均成绩•在SuperCLUE测评中,国外模型的平均成绩为69.42分,国内模型平均成绩为65.95分,差距在4分左右。另外国内开源模型在中文上表现要好于国外开源模型,如百川智能的Baichuan2-13B-Chat、阿里云的Qwen-72B、Yi-34B-Cha t均优于Llama2-13B-Chat。•可以看出,国内外的平均水平差距在缩小,11月差距在10分左右。

2023年度中文大模型基准测评报告.pdf

趋势展示,选取了7月-12月SuperCLUE-OPEN测评分数。国内代表性模型,选取了文心一言、通义千问、ChatGLM。原因是综合考虑了过去半年SuperCLUE测评结果、长期稳定迭代及对国内大模型生态的贡献;GPT4成绩,由GPT4API(7-9月)与GPT4-Turbo(10-12月)组成,用以表现国外最好模型发展。[heading4]第2部分测评体系、方法说明[content]1.SuperCLUE介绍2.测评层级3.测评体系4.测评方法及示例[heading4]SuperCLUE介绍[content]中文语言理解测评基准C L U E(T h e C h i n e s e L a n g u a g e Understanding Evaluation)是致力于科学、客观、中立的语言模型评测基准,发起于2019年。陆续推出CLUE、FewCLUE、KgCLUE、DataCLUE等广为引用的测评基准。SuperCLUE是大模型时代CLUE基准的发展和延续。聚焦于通用大模型的综合性测评。传统语言模型测评往往局限于学术范围的单轮选择题,SuperCLUE根据多年的测评经验,基于通用大模型在学术、产业与用户侧的广泛应用,构建了多层次、多维度的综合性测评基准。传统测评与SuperCLUE的区别01 02[heading3]第三方测评,不与模型厂商竞争[content]SuperCLUE始终秉持中立、客观的第三方测评理念,不会预设立场或偏向特定的模型方。同时,SuperCLUE采用自动化方式的客观评估,大大降低评测过程中的人为评估的不确定性。

2023年度中文大模型基准测评报告.pdf

注:计算分值为模型的OPEN分与OPT分值的差值,用以观察模型在主观题和客观题上的不同表现。通过对比模型在主观简答题OPEN和客观选择题OPT上的不同表现,可以发现,国内大模型多数擅长做选择题。普遍选择题的分数会高于简答题的分数。其中,文心一言4.0和智谱清言表现相对稳定,分别为(13.38)和(-14.01)。GPT-4 Turbo的表现最为稳定,差值仅有0.86。SuperCLUE认为,客观题相对主观题更容易通过题库形式进行训练和提升;同时也由于客观题中包含中文特性问题,中文模型自然有一定的优势,所以应该综合来看模型的评测效果。值得关注的是,在本次测评中,国外的代表性大模型如GPT4的不同版本、Claude2、Llama2都很好的稳定性表现,值得国内大模型进一步分析研究。[heading3]开源竞争格局

Others are asking
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
评测模型生图好坏的标准
评测模型生图好坏的标准主要包括以下几个方面: 1. 模型选择: 基础模型(Checkpoint):生图必需,不同模型适用于不同主题。 Lora:低阶自适应模型,可用于精细控制面部、材质、物品等细节。 ControlNet:控制图片中特定图像,如人物姿态、生成特定文字等。 VAE:类似于滤镜,可调整生图饱和度。 2. 提示词设置: 正向提示词(Prompt):描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 3. 图片视觉质量: 自然度和美观度是关键指标。 可从数据和训练方法两方面提升,如使用特定的网络结构。 4. 文字生成能力: 目前未有模型具有良好的中文文字生成能力。 提升中文文字生成能力需从多方面准备数据。 需要注意的是,模型生图的效果并非完全由这些标准决定,还可能受到其他因素的影响,需要不断尝试和学习以获得更好的生图效果。
2024-12-26
多模图生文评测集
以下是关于多模图生文评测集的相关信息: 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。构建了包含 14 种垂类、12 个挑战项、总数量为一千多个 prompt 的文生图评估集 KolorsPrompts。在 KolorsPrompts 上,收集了 Kolors 与市面上常见的 SOTA 级别的开源/闭源系统的文生图结果,并进行了人工评测和机器评测。 人工评测方面,邀请了 50 个具有图像领域知识的专业评估人员对不同模型的生成结果进行对比评估,衡量维度为画面质量、图文相关性、整体满意度三个方面。Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。 Kolors 开源模型相关: 2024.07.03,Kolors 在智源研究院评测中取得第二名,其中中文主观质量、英文主观质量两个单项排名第一。 2024.07.02,祝贺,可图项目组提出的可控视频生成方法被 ECCV 2024 接收。 2024.02.08,祝贺,可图项目组提出的生成模型评估方法被 CVPR 2024 接收。 多模态大模型入门指南: 训练过程: 预训练阶段:通常利用 XText 的数据集,来训练输入、输出的 Projector。通过优化损失函数来实现不同模态的对齐。PEFT 有时候用于 LLM Backbone。X文本数据集包含图像文本、视频文本和音频文本,其中图像文本有两种类型:图像文本对(即<img1><txt1>)和交错图像文本语料库(即,txt1><img1><txt2><txt3><img2><txt4>)。这些 XText 数据集的详细统计数据如附录 F 的表 3 所示。 多模态微调:对满足指令微调格式的一系列数据集对预训练好的多模态大模型进行微调。通过这种微调,MMLLM 可以遵循新的指令泛化到没有见过的任务,增强 zeroshot 的能力。MM IT 包括监督微调(SFT)和 RLHF 两部分,目的是为了使得模型符合人类的意图或者偏好,并且增强 MMLLMs 的交互能力。SFT 将 PT 阶段的数据转换为指令aware 的格式,使用 QA 任务作为例子。可以采用各种模板。优化目标和预训练相同,SFT 数据可以构造为单轮的 QA 或者多轮的 QA。常用的 SFT 和 RLHF 的数据集见表 4。
2024-12-06
图生文评测集
以下是关于图生文评测集的相关内容: 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在相关基准评测中,Kolors 表现有竞争力,达业界领先水平。构建了包含 14 种垂类、12 个挑战项、总数量一千多个 prompt 的文生图评估集 KolorsPrompts。在 KolorsPrompts 上,收集了 Kolors 与常见 SOTA 级别开源/闭源系统的文生图结果,并进行人工评测和机器评测。 人工评测方面,邀请 50 个具有图像领域知识的专业评估人员对不同模型生成结果对比评估,衡量维度为画面质量、图文相关性、整体满意度。Kolors 在整体满意度方面最优,画面质量显著领先其他模型。具体平均分如下: |模型|整体满意度平均分|画面质量平均分|图文相关性平均分| ||||| |AdobeFirefly|3.03|3.46|3.84| |Stable Diffusion 3|3.26|3.5|4.2| |DALLE 3|3.32|3.54|4.22| |Midjourneyv5|3.32|3.68|4.02| |Playgroundv2.5|3.37|3.73|4.04| |Midjourneyv6|3.58|3.92|4.18| |Kolors|3.59|3.99|4.17| 此外,还有关于 Vidu 大家测试和 Tusiart 简易上手教程的相关信息: Vidu 全球上线,注册即刻体验。Web 端访问:https://www.vidu.studio/ ,具有极速生成(实测 30 秒最快推理速度)、动漫风格、角色可控、精准理解、大片质感等特点。同时提供了“文生视频”“图生视频(用作起始帧)”“参考人物角色生成视频”的使用指南及相关视频链接。 Tusiart 简易上手教程中,文生图的相关要点包括:提示词相关性(数字在 5 15 之间为宜)、随机种子、ADetailer(面部修复插件)、CLIP skip(设成 2 )。
2024-12-06
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
AI公司的评测标准
以下是为您整理的关于 AI 公司评测标准的相关内容: 在 AI 领域,对公司的评测可能涉及多个方面。例如,从宏观角度来看,一个国家在 AI 方面的领先地位可能取决于其研究基础、高校培养的专业人才、创新者的创造力以及政府的长期投资和支持。同时,良好的监管环境对于确保创新者能够发展并应对 AI 带来的风险至关重要。 在具体的活动如麦乐园 AI 选美大赛中,评审标准包括审美(美的人、服装、场景)、创意(令人耳目一新)、氛围(情绪和故事性饱满,令人回味)、技术(精致执行,无明显瑕疵)。但需要注意的是,这只是特定活动中的评审标准,不能完全代表对 AI 公司的普遍评测标准。 总体而言,AI 公司的评测标准是复杂且多维度的,会因具体的应用场景和行业需求而有所不同。
2024-10-23
SuperCLUE半年度测评报告
以下是关于 SuperCLUE 半年度测评报告的相关内容: 趋势说明: 过去半年,国内领军大模型企业实现了代际追赶。7 月与 GPT3.5 有 20 分差距,之后每月稳定且大幅提升,11 月总分超越 GPT3.5。GPT3.5 和 GPT4 在中文表现上基本一致,11 月有下滑,国内头部模型持续稳健提升。12 月国内第一梯队模型与 GPT4 差距缩小,但仍需追赶。部分国内代表性模型 7 月至 12 月的得分情况为:文心一言 50.48、54.18、53.72、61.81、73.62、75;通义千问 41.73、33.78、43.36、61.01、71.78;ChatGLM 42.46、38.49、54.31、58.53、63.27、69.91。 测评方法: 采用多维度、多视角的综合性测评方案,包括多轮开放问题 SuperCLUEOPEN 和三大能力客观题 SuperCLUEOPT。评测集共 4273 题,其中 1060 道多轮简答题(OPEN),3213 道客观选择题(OPT)。OPEN 基准使用超级模型作为评判官,对比待评估模型与基准模型,计算胜和率作为 OPEN 得分。OPT 主要测评选择题,包括基础能力、中文特性、专业与学术能力,构造统一 prompt 供模型使用,要求选取唯一选项。SuperCLUE 总分由 0.7OPEN 分+0.3OPT 分计算得出。 第三方测评特点: SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低人为评估的不确定性。测评方式与真实用户体验目标一致,纳入开放主观问题测评,通过多维度多视角多层次的评测体系和对话形式,模拟应用场景,考察模型生成能力,构建多轮对话场景,全方位评测大模型。同时,不限于学术领域的测评,旨在服务产业界,从多个维度的选择和设计到行业大模型测评基准的推出,都是为产业和应用服务,反映通用大模型与产业应用的差距,引导大模型提升技术落地效果。
2024-09-20
制作动态图标的AI工具有哪些
以下是一些可以制作动态图标的 AI 工具: 1. 即梦:可以用于制作动态图标。 2. runway:能够辅助制作动态图标。 此外,在其他领域也有一些相关的 AI 工具: 1. 在 CAD 图绘制方面: CADtools 12:是 Adobe Illustrator 插件,添加了 92 个绘图和编辑工具。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:能根据输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的生成设计工具。 2. 在绘制逻辑视图、功能视图、部署视图方面: Lucidchart:流行的在线绘图工具,支持多种视图创建。 Visual Paradigm:全面的 UML 工具,提供多种视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用。 Enterprise Architect:强大的建模、设计和生成代码工具。 Microsoft Visio:广泛使用的图表和矢量图形应用程序。 draw.io(diagrams.net):免费的在线图表软件。 PlantUML:文本到 UML 转换工具。 Gliffy:基于云的绘图工具。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后再尝试使用这些工具来提高效率。
2024-12-02
有好的设计商标的AI吗
以下是一些可以帮助生成商标(Logo)的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,它使用 AI 来理解用户的品牌信息和设计偏好,然后生成多个 Logo 设计方案供用户选择和定制。 2. Tailor Brands:这是一个 AI 驱动的品牌创建工具,它提供 Logo 设计服务,通过用户回答一系列关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术来创建个性化的 Logo 设计。用户可以选择不同的设计元素和风格,AI 将基于这些输入生成设计方案。 4. LogoMakr:提供一个简单易用的 Logo 设计工具,用户可以通过拖放的方式来设计 Logo,并且可以利用 AI 建议的设计元素和颜色方案。 5. Canva:这是一个广受欢迎的在线设计工具,它提供了 Logo 设计的模板和元素,用户可以利用 AI 辅助的设计建议来创建自己的品牌标识。 6. LogoAI by Tailor Brands:这是 Tailor Brands 推出的一个 AI Logo 设计工具,它可以根据用户输入的品牌名称和行业类别快速生成 Logo 设计方案。 7. 标小智:这是一个中文 AI Logo 设计工具,它利用人工智能技术帮助用户创建个性化的 Logo。 这些 AI 产品使得即使是没有设计背景的用户也能够轻松创建专业的 Logo 设计,从而为品牌建设提供了便利。使用这些工具时,用户通常可以根据自己的品牌理念和视觉偏好,通过简单的交互来获得一系列设计方案,并进一步定制和优化,直到满意为止。另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。
2024-09-29
请问可以给推荐制作商标的免费ai工具么
以下是一些可以制作商标的免费 AI 工具: 1. Looka:是一个在线 Logo 设计平台,它使用 AI 来理解用户的品牌信息和设计偏好,然后生成多个 Logo 设计方案供用户选择和定制。 2. Tailor Brands:是一个 AI 驱动的品牌创建工具,它提供 Logo 设计服务,通过用户回答一系列关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术来创建个性化的 Logo 设计。用户可以选择不同的设计元素和风格,AI 将基于这些输入生成设计方案。 4. LogoMakr:提供一个简单易用的 Logo 设计工具,用户可以通过拖放的方式来设计 Logo,并且可以利用 AI 建议的设计元素和颜色方案。 5. Canva:是一个广受欢迎的在线设计工具,它提供了 Logo 设计的模板和元素,用户可以利用 AI 辅助的设计建议来创建自己的品牌标识。 6. LogoAI by Tailor Brands:是 Tailor Brands 推出的一个 AI Logo 设计工具,它可以根据用户输入的品牌名称和行业类别快速生成 Logo 设计方案。 7. 标小智:是一个中文 AI Logo 设计工具,它利用人工智能技术帮助用户创建个性化的 Logo。
2024-08-23
请问可以给推荐制作商标的ai工具么
以下是一些可以制作商标的 AI 工具: 1. Bookmark:网址为 https://www.bookmark.com/ 。AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单的问题,快速生成一个网站,并提供直观的拖放编辑器,用户可以轻松自定义网站内容和布局,包括多种行业模板和自动化营销工具。 2. Looka:是一个在线 Logo 设计平台,它使用 AI 来理解用户的品牌信息和设计偏好,然后生成多个 Logo 设计方案供用户选择和定制。 3. Tailor Brands:是一个 AI 驱动的品牌创建工具,它提供 Logo 设计服务,通过用户回答一系列关于品牌和设计风格的问题来生成 Logo 选项。 4. Designhill:其 Logo 制作器使用 AI 技术来创建个性化的 Logo 设计。用户可以选择不同的设计元素和风格,AI 将基于这些输入生成设计方案。 5. LogoMakr:提供一个简单易用的 Logo 设计工具,用户可以通过拖放的方式来设计 Logo,并且可以利用 AI 建议的设计元素和颜色方案。 6. Canva:是一个广受欢迎的在线设计工具,它提供了 Logo 设计的模板和元素,用户可以利用 AI 辅助的设计建议来创建自己的品牌标识。 7. LogoAI by Tailor Brands:是 Tailor Brands 推出的一个 AI Logo 设计工具,它可以根据用户输入的品牌名称和行业类别快速生成 Logo 设计方案。 8. 标小智:是一个中文 AI Logo 设计工具,它利用人工智能技术帮助用户创建个性化的 Logo。 9. Namelix:官网为 https://namelix.com/ 。Namelix 是一个利用人工智能生成短小、易记的商业名称和域名的工具。除了生成名称,Namelix 还与 Brandmark.io 集成,为用户提供人工智能支持的标志设计服务。
2024-08-23
你是国产的大模型还是国外的
目前国内外大模型的发展情况如下: 国内外差距依然明显,GPT 4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT 4Turbo 有 11.61 分差距,与 GPT 4(网页)有 4.9 分差距。但过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等。 在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,不过平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat 等。 在语言与知识的测评中,GPT4 Turbo 依然领先,是唯一超过 90 分的大模型。国内大模型也表现相对较好,OPPO 的 AndesGPT、阿里云的通义千问 2.0 等较为接近 GPT4。 国内大模型在中文语言与知识能力上已基本追赶上国外头部大模型。 此外,新用户可在阿里、腾讯官网获取免费试用服务器,如腾讯云的轻量应用服务器、阿里云的服务器 ECS,服务器系统配置选择宝塔系统。免费大模型接口方面,国内有阿里的通义千问大模型、智谱 AI(ChatGLM)、科大讯飞(SparkDesk)等,均有限制一定免费额度的 Token。国外有谷歌的 Gemini 大模型、海外版 Coze 的 GPT4 模型,免费且能图片识别,但需要给服务器挂梯子,具体操作可参考相关教程。
2025-01-04
国外比较主流的大模型有哪些
国外比较主流的大模型有: 1. GPT4Turbo:OpenAI 于 2023 年 11 月 7 日发布的 GPT4 的升级版本。 2. GPT4(网页版):OpenAI GPT4 官方网页版本,支持联网功能。 3. GPT4(API):OpenAI GPT4 官方 API 版本,不支持联网功能。 4. Claude2:Anthropic 官方发布的模型。 5. Geminipro:Google 官方发布的模型。 6. GPT3.5Turbo:OpenAI 的模型。 7. Llama_2_13B_Chat:Meta 发布的模型。
2025-01-03
国外最著名的10个AI,可免费使用的
以下是国外 10 个可免费使用的著名 AI: 1. Langfuse:大模型应用的开源追踪和分析工具,提供开源可观测性和分析功能,可在可视化界面中探索和调试复杂的日志和追踪,使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 2. Eden AI:将顶尖 AI API 融合为一,能为每项 AI 任务选择正确的 AI API 来提高准确性和降低成本,集中管理使用限制和成本监测,并不断探索市场上新兴的 AI 能力。 3. Langdock:能在几分钟内创建、部署、测试和监控 ChatGPT 插件,将 API 连接到 Langdock,并将其作为插件部署到所有大模型应用中,然后使用内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。 4. LLM Spark:用于构建生产就绪大模型应用的开发平台。 5. Civitai:开源生成式人工智能的家园,提供模型托管、图像/视频生成和模型训练服务,已发展成为一个拥有 650 万月活跃成员的社区。 6. KLING AI:下一代一站式人工智能创作平台,拥有强大的人工智能图像和视频生成能力,通过提示和图像激发创造力,制作出完美模拟现实世界的图像和视频,具有先进的文本理解能力、精细的细节处理和多种风格。 7. Viggle:允许用户通过 3D 视频基础模型 JST 指定角色的动作,创作者、品牌和电影制作人可以轻松地替换角色、复制动作并将他们的想法变为现实。 8. Hailuo Video by MiniMax:强大的人工智能驱动的视频生成引擎,能将简单文本转换为生动、专业品质的视频,将静态图像转换为动态视觉故事。 9. Hedra:开创性的视频基础模型公司,正在构建一个能够实现控制、情感和创造性智能的全栈创作工作室。 10. Bing:在写东西方面是最佳免费选项之一。 11. Claude 2:在写东西方面是免费选项之一。
2024-12-31
国外最著名的5个AI
国外著名的 AI 包括以下几个: 1. OpenAI 开发的 ChatGPT,具备强大的推理能力,能够根据上下文和文件提供详细分析和意见。 2. Stability AI 发布的 Stable Video Diffusion,是第一个能够从文本提示生成高质量、真实视频的模型之一,在定制化方面有显著进步。 3. OpenAI 的 Sora,能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。 4. Google DeepMind 的 Veo,能将文本和可选图像提示与嘈杂压缩视频输入相结合,创建独特的压缩视频表示。 5. Rockset,刚被 OpenAI 收购,提供实时搜索和分析数据库服务。
2024-12-31
帮我找一个能找国外企业联系的AI
以下为您介绍一些能联系国外企业的 AI 相关信息: 在聊天对话类 AI 产品中,国外知名的有 ChatGPT。它由 OpenAI 开发,是首批向公众开放的大规模商用 AI 对话系统之一,在全球范围内引起了 AI 革命。其具有开创性、良好的用户体验和强大的技术实力,但也存在局限性,如对于国内用户可能存在网络连接问题。如果身在海外或有稳定的国际网络连接,ChatGPT 是不错的选择。 关于 AI 生成视频工具,国外的如 Google DeepMind 和 Meta 有所展示。Meta 的 Movie Gen 核心包含 30 亿视频生成和 13 亿音频生成模型。但报告中未对中国的相关工具展开详细说明,实际上 2024 年国内涌现了类似可灵、即梦、智谱清影等一系列生成视频工具,生成结果甚至远超国外。
2024-12-18
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14