以下是关于 SuperCLUE 半年度测评报告的相关内容:
趋势说明: 过去半年,国内领军大模型企业实现了代际追赶。7 月与 GPT3.5 有 20 分差距,之后每月稳定且大幅提升,11 月总分超越 GPT3.5。GPT3.5 和 GPT4 在中文表现上基本一致,11 月有下滑,国内头部模型持续稳健提升。12 月国内第一梯队模型与 GPT4 差距缩小,但仍需追赶。部分国内代表性模型 7 月至 12 月的得分情况为:文心一言 50.48、54.18、53.72、61.81、73.62、75;通义千问 41.73、33.78、43.36、61.01、71.78;ChatGLM 42.46、38.49、54.31、58.53、63.27、69.91。
测评方法: 采用多维度、多视角的综合性测评方案,包括多轮开放问题 SuperCLUE-OPEN 和三大能力客观题 SuperCLUE-OPT。评测集共 4273 题,其中 1060 道多轮简答题(OPEN),3213 道客观选择题(OPT)。OPEN 基准使用超级模型作为评判官,对比待评估模型与基准模型,计算胜和率作为 OPEN 得分。OPT 主要测评选择题,包括基础能力、中文特性、专业与学术能力,构造统一 prompt 供模型使用,要求选取唯一选项。SuperCLUE 总分由 0.7OPEN 分+0.3OPT 分计算得出。
第三方测评特点: SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低人为评估的不确定性。测评方式与真实用户体验目标一致,纳入开放主观问题测评,通过多维度多视角多层次的评测体系和对话形式,模拟应用场景,考察模型生成能力,构建多轮对话场景,全方位评测大模型。同时,不限于学术领域的测评,旨在服务产业界,从多个维度的选择和设计到行业大模型测评基准的推出,都是为产业和应用服务,反映通用大模型与产业应用的差距,引导大模型提升技术落地效果。
过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从7月份与GPT3.5的20分差距,每个月都有稳定且巨大的提升,到11月份测评时已经完成总分上对GPT3.5的超越。我们可以看到GPT3.5和GPT4在中文上的表现情况基本一致,在11月份测评结果中显示,在中文能力都有一定的下滑,而国内头部模型则展现了继续稳健提升的能力。在12月份的测评结果中可以看到,国内第一梯队模型与GPT4的差距在缩小。但仍有较大的距离需要追赶。模型7月8月9月文心一言50.48 54.18 53.72通义千问41.73 33.78 ChatGLM 42.46 38.49 54.31部分国内代表性模型SuperCLUE基准得分(7月-12月)10月61.8143.3658.5311月73.6261.0163.2712月75 71.7869.91说明:趋势展示,选取了7月-12月SuperCLUE-OPEN测评分数。国内代表性模型,选取了文心一言、通义千问、ChatGLM。原因是综合考虑了过去半年SuperCLUE测评结果、长期稳定迭代及对国内大模型生态的贡献;GPT4成绩,由GPT4API(7-9月)与GPT4-Turbo(10-12月)组成,用以表现国外最好模型发展。
为更真实反应大模型能力,本次测评采用多维度、多视角的综合性测评方案,由多轮开放问题SuperCLUE-OPEN和三大能力客观题SuperCLUE-OPT两持续扩充C L U E测评组OPEN在一个确定的评估标准指导下,OPEN基准使用超级模型作为评判官,使用一个待评估模型与一个基准模型进行对比,让超级模型选出A模型好,B模型好,或平局。进而计算胜和率作为OPEN得分。部分测评结果组成。评测集共4273题,其中1060道多轮简答题(OPEN),3213道客观选择题(OPT),以下为评测集与测评方法简述。评测反馈10万+题库被测模型A(如文心一言)VS多轮基线模型B(如GPT3.5)SuperCLUE总分不重复抽样裁判模型(如GPT4-Turbo)胜(3分)、和(1分)、负(0分)=5000原始评测集OPEN分=胜和率0.7*OPEN分+0.3*OPT分人工校验4273道评测题OPTOPT主要测评选择题,包括基础能力、中文特性、专业与学术能力。构造了统一的prompt供模型使用,要求模型选取ABCD中唯一的选项。注:多轮简答题OPEN更能反应模型真实能力,故权重设置提高。• 1060道多轮简答题(OPEN)被测模型A选择题库单选ABCD• 3213道客观选择题(OPT)OPT分=准确率
SuperCLUE始终秉持中立、客观的第三方测评理念,不会预设立场或偏向特定的模型方。同时,SuperCLUE采用自动化方式的客观评估,大大降低评测过程中的人为评估的不确定性。[heading1]测评方式与真实用户体验目标一致[content]不同于传统测评通过选择题形式的测评,SuperCLUE目标是与真实用户体验目标保持一致,所以纳入了开放主观问题的测评。通过多维度多视角多层次的评测体系以及对话的形式,真实模拟大模型的应用场景,真实有效的考察模型生成能力。同时,SuperCLUE通过构建多轮对话场景,更深层次考察大模型在真实多轮对话场景的应用效果。对大模型的上下文、记忆、对话能力全方位评测。不限于学术领域的测评,更为了服务产业界不同于传统学术领域的评测,SuperCLUE从通用基准维度的选择、安全和智能体专项测评的设计,到行业大模型测评基准的推出,所有评测的目的都是为产业和应用服务。真实反应通用大模型与产业应用之间的差距,引导大模型提升技术落地效果,在通用能力的基础上更好的进行垂直领域的应用。测评层级