Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多模态的应用场景

Answer

多模态的应用场景广泛,主要包括以下方面:

  1. 娱乐领域:如与 AI 导师进行视频聊天、与 AI 合作迭代和编写电视剧剧本等,为消费者提供更加引人入胜、连贯和全面的体验。
  2. 内容生成:改变娱乐、学习与发展以及跨各种消费者和企业用例的内容生成。
  3. 工具使用:使大语言模型能够使用设计给人类使用但没有自定义集成的工具,例如传统的企业资源计划(ERP)系统、桌面应用程序、医疗设备或制造机械。
  4. 视频处理:包括视频搜索,通过描述性语言在数小时的视频内容中快速找到用户想要的瞬间;视频-文本生成,从视频生成文本摘要、关键点、标签和标题等;定制化模型,允许用户微调自己的模型以满足特定领域需求。
  5. 落地场景:如广告插入与内容审核,区分视频内容的性质;流媒体内容分析,自动生成媒体分析报告;运动赛事视频分析,帮助精彩瞬间捕捉、技术动作分析、比赛策略分析等。
  6. 扩展到物理现实:通过机器人、自动驾驶车辆和其他需要与物理世界实时交互的应用程序,将大语言模型扩展到我们自己的物理现实中。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

图9大模型核心基础概念泛化能力:不用人话说是“指模型在未曾见过的数据上表现良好的能力”,用大白话讲就是“举一反三”的能力,人类就是泛化能力很强的物种,我们不需要见过这个世界上的每一只猫,就能认识猫这个概念。多模态:指多数据类型交互,从而能够提供更接近人类感知的场景。正如人有眼、耳、鼻、舌、身、意等多个模态,大模型对应的模态是文本、图像、音频、视频……对齐能力:指与人类价值观与利益目标保持一致的能力。大模型相比我们普通人类个体是“无所不知”的,但他并不会把他知道的都告诉你,例如你问chatGPT如何制造炸弹,他虽然知道,但并不会告诉你具体步骤和配方,这是因为chatGPT做了很好的对齐工程,但目前阶段,有很多提示词注入的方法,也能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场(事实上,人类自身就不是一个价值观对齐的物种,同一件事在一些群体眼中稀松平常,但在另一些群体眼中十恶不赦,因此“和谁对齐”确实是一个灵魂问题)。图10大模型核心基础概念

生成式人工智能领域的 4 个突破点

尽管聊天界面对许多用户来说令人兴奋和直观,但人类听和说语言的频率可能与写或读语言的频率相当或更高。正如Amodei所指出的:“AI系统能做的事情是有限的,因为并不是所有的事情都是文本。”具备多模态功能的模型能够无缝地处理和生成多种音频或视觉格式的内容,将这种交互扩展到超越语言的领域。像GPT-4、Character.AI和Meta的ImageBind这样的模型已经能够处理和生成图像、音频和其他模态,但它们在这方面的能力还比较基础,尽管进展迅速。用Gomez的话说,我们的模型在字面上今天是盲的,这一点需要改变。我们构建了很多假设用户能够看到的图形用户界面(GUI)。随着LLMs不断进化,更好地理解和与多种模态交互,它们将能够使用依赖GUI的现有应用程序,比如浏览器。它们还可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。Shazeer指出:“多模态模型的许多出色整合可以使事物更具吸引力和与用户更紧密相连。”他还说:“我认为,目前大部分核心智能来自文本,但音频和视频可以使这些事物更有趣。”从与AI导师进行视频聊天到与AI合作迭代和编写电视剧剧本,多模态有潜力改变娱乐、学习与发展以及跨各种消费者和企业用例的内容生成。多模态与工具使用密切相关。尽管LLMs最初可能通过API与外部软件进行连接,但多模态将使LLMs能够使用设计给人类使用但没有自定义集成的工具,例如传统的企业资源计划(ERP)系统、桌面应用程序、医疗设备或制造机械。在这方面,我们已经看到了令人兴奋的进展:例如,谷歌的Med-PaLM-2模型可以合成乳腺摄影和X射线图像。而且从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆和其他需要与物理世界实时交互的应用程序,将LLMs扩展到我们自己的物理现实中。

质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期

资金与投资:李飞飞、Scale AI创始人Alexandr Wang、Nvidia、Intel Capital、Samsung NEXT Ventures模型特点:Pegasus-1是一个先进的视频理解模型,约800亿参数,能够深入理解视频内容。能够处理从10秒到数小时不等长度的视频。能够理解视觉信息以及音频和语音信息,包括人物、物体、场景,背景音乐和对话等。解决方案:视频搜索:语义视频搜索服务,通过描述性语言在数小时的视频内容中快速找到用户想要的那一瞬间视频-文本生成:提供API以从视频生成文本摘要、关键点、标签和标题等,能够在没有音频或者文字的情况下,提供视频内容的报告。定制化模型:提供定制化服务,允许用户微调自己的模型,以满足特定领域的需求落地场景:广告插入与内容审核:用于判断视频内容,例如区分展示刀具的视频是暴力内容还是教学内容流媒体内容分析:自动生成媒体分析报告,比如从视频中自动生成亮点集锦,或者为视频生成标题和标签运动赛事视频分析:与NFL在内的多个行业公司合作,帮助精彩瞬间捕捉、技术动作分析、比赛策略分析等Google:多模态模型MUM(Multitask Unified Model)

Others are asking
多模态大模型与图像、视频生成
多模态大模型与图像、视频生成相关知识如下: 多模态大模型的架构和原理:基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。 Stable Diffusion 模型原理:是生成模型,通过加噪和去噪实现图像的正向扩散和反向还原,解决潜在空间模型中的速度问题。其应用场景包括带货商品图生成、模特服装展示、海报生成、装修设计等。 吉梦 AI 和吐司平台的使用体验:吉梦 AI 提供 AI 视频生成等能力,通过简单提示词生成图像,对数字体有专项场景训练;吐司是类似的在线生成平台,具备多种 AI 能力,有模型、在线训练、上传模型工作流等功能,可通过输入提示词生成图片。 模型训练:训练模型需要大量图像数据和标签化处理。 AI 视频生成原理:主要基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。 模态生成器 MG_X 一般用于生成不同的模态来输出。当前的工作一般使用现成的扩大模型(Latent diffusion model),例如 Stable Diffusion 用于图像生成,Zeroscope 用于视频生成,AudioLDM2 用于音频生成。 多模态模型的技术架构:如果模型既支持 3D 生成,又支持视频生成,就可以实现图文编辑以及具有强一致性的视频生成。Open AI 可能会尝试把图片、视频、3D 变为一个自然空间。Transformer 架构的多模态模型给机器提供了像人类一样与世界互动的新机会,杨立昆(Yann LeCun)提出的世界模型可能是近一年值得关注的研究点。
2025-01-07
多模态大模型与图像、视频生成
多模态大模型与图像、视频生成相关知识如下: 多模态大模型的架构和原理:基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。 Stable Diffusion 模型原理:是生成模型,通过加噪和去噪实现图像的正向扩散和反向还原,解决潜在空间模型中的速度问题。其应用场景包括带货商品图生成、模特服装展示、海报生成、装修设计等。 吉梦 AI 和吐司平台的使用体验:吉梦 AI 提供 AI 视频生成等能力,通过简单提示词生成图像,对数字体有专项场景训练;吐司是类似的在线生成平台,具备多种 AI 能力,有模型、在线训练、上传模型工作流等功能,可通过输入提示词生成图片。 模型训练:训练模型需要大量图像数据和标签化处理。 AI 视频生成原理:主要基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。 模态生成器 MG_X 一般用于生成不同的模态来输出。当前的工作一般使用现成的扩大模型(Latent diffusion model),例如 Stable Diffusion 用于图像生成,Zeroscope 用于视频生成,AudioLDM2 用于音频生成。 多模态模型的技术架构:如果模型既支持 3D 生成,又支持视频生成,就可以实现图文编辑以及具有强一致性的视频生成。Open AI 可能会尝试把图片、视频、3D 变为一个自然空间,Google 的 VideoPoet 已在这个方向上有尝试,但分辨率不够高。Transformer 架构的多模态模型给机器提供了像人类一样与世界互动的新机会,杨立昆(Yann LeCun)提出的世界模型可能是近一年值得关注的研究点。
2025-01-07
Video-LLaVA与多模态图像视频识别
以下是对 26 个多模态大模型的全面比较总结: 1. Flamingo:是一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本作为输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到多模态(MM)领域,为解决数据稀缺问题,引入使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集及基准 LLaVABench。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能复制 GPT4 展示的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含用于评估的 OwlEval 教学评估数据集。 6. XLLM:陈等人将其扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性成功应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域未来研究制定标准,并为学术界和工业界提供协议。
2025-01-07
多模态模型与多模态问答
多模态模型与多模态问答相关内容如下: Gemini 模型在图像理解方面表现出色,在多个基准测试中处于领先地位。它在高级对象识别、细粒度转录、空间理解和多模态推理等任务中展现出强大性能,在 zeroshot QA 评估中优于其他模型,在学术基准测试中如 MathVista 和 InfographicVQA 有显著改进,在 MMMU 基准测试中取得最好分数。 智谱·AI 推出了具有视觉和语言双模态的模型,如 CogAgent18B、CogVLM17B 和 Visualglm6B。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持高分辨率图像理解,具备 GUI 图像的 Agent 能力。CogVLM17B 是多模态权威学术榜单上综合成绩第一的模型。VisualGLM6B 是支持图像、中文和英文的多模态对话语言模型。 Zhang 等人(2023)提出了一种多模态思维链提示方法,将文本和视觉融入到一个两阶段框架中,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-01-07
什么是多模态模型
多模态模型是指能够处理和融合多种不同模态信息(如视觉、语言、音频等)的模型。 智谱·AI 推出了具有视觉和语言双模态的模型,例如: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩优异,能实现视觉语言特征的深度融合。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。 Gemini 模型本身也是多模态的,展示了无缝结合跨模态能力,能从表格、图表或图形中提取信息和空间布局,具有强大的推理能力,在识别输入中的细微细节、在空间和时间上聚合上下文,以及在一系列视频帧和/或音频输入上应用这些能力方面表现出色。
2025-01-07
常用的多模态大模型
以下是一些常用的多模态大模型: 1. InstructBLIP:基于预训练的BLIP2模型进行训练,在MM IT期间仅更新QFormer。通过引入指令感知的视觉特征提取和相应的指令,能够提取灵活多样的特征。 2. PandaGPT:是一种开创性的通用模型,能够理解6种不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 3. PaLIX:使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 4. VideoLLaMA:引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时处理给定视频的视觉和音频内容,使视觉与语言以及音频与语言保持一致。 5. 视频聊天GPT:专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。 6. Shikra:Chen等人介绍了一种简单且统一的预训练MMLLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制,展示了值得称赞的泛化能力,可以有效处理看不见的设置。 7. DLP:提出PFormer来预测理想提示,并在单模态句子数据集上进行训练,展示了单模态训练增强MM学习的可行性。 8. BuboGPT:通过学习共享语义空间构建,用于全面理解MM内容,探索不同模式之间的细粒度关系。 9. ChatSpot:引入了一种简单而有效的方法来微调MMLLM的精确引用指令,促进细粒度的交互。 10. QwenVL:多语言MMLLM,支持英文和中文,还允许在训练阶段输入多个图像,提高其理解视觉上下文的能力。 11. NExTGPT:端到端、通用的anytoany MMLLM,支持图像、视频、音频、文本的自由输入输出,采用轻量级对齐策略。 12. MiniGPT5:集成了生成voken的反演以及与稳定扩散的集成,擅长为MM生成执行交错VL输出,在训练阶段加入无分类器指导可以提高生成质量。 13. Flamingo:代表了一系列视觉语言模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。 14. BLIP2:引入了资源效率更高的框架,包括用于弥补模态差距的轻量级QFormer,实现对冻结LLMs的充分利用,利用LLMs可以使用自然语言提示进行零样本图像到文本的生成。 15. LLaVA:率先将IT技术应用到MM领域,引入了使用ChatGPT/GPT4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVABench。 16. MiniGPT4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐,能够复制GPT4所展示的功能。 17. mPLUGOwl:提出了一种新颖的MMLLMs模块化训练框架,结合了视觉上下文,包含一个名为OwlEval的教学评估数据集。 18. XLLM:扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用QFormer的语言可迁移性,成功应用于汉藏语境。 19. VideoChat:开创了一种高效的以聊天为中心的MMLLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。
2025-01-06
最近Agent方面的场景案例
以下是一些关于 Agent 方面的场景案例: 1. 吴恩达最新演讲中提到的四种 Agent 设计范式: Reflection(反思):例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,通过反复操作完成自我迭代,虽不能保证修改后代码质量,但效果通常更好。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 Planning(规划):属于比较新颖且有前景的方式。 Multiagent(多智能体):也具有发展潜力。 2. Ranger 文章中的相关内容: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”通常是 LLM 或大模型,通过为其增加工具、记忆、行动、规划这四个能力来实现。 行业里主要用到的是 langchain 框架,它在 prompt 层和工具层完成主要的设计,将 LLM 与 LLM 以及 LLM 与工具进行串接。 3. 从词源和历史变迁来看: 在不同时期,“Agent”在商业、政府、情报、娱乐、体育等领域都有重要角色,涵盖贸易代理、公司代理商、情报特工、艺人经纪人等多种职业。 “Agent”一词具有行动和替身的含义,多数情况下指“拥有行动的替身,替代他人做某事”。
2025-01-07
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
RAG的经典应用场景
RAG(检索增强生成)的经典应用场景主要包括以下方面: 1. 构建智能问答客服:用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 2. 知识问答系统:用户提问后,RAG 从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到提示词中,提交给大模型,大模型的回答会充分考虑到“包含答案的内容”。
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,把同一个问题让不同的大模型解答是高频操作,主要适用于以下场景: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型在解决不同问题时各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录 模型的类型可以通过检测。
2025-01-06
RAG的经典应用场景
RAG(检索增强生成)的经典应用场景主要包括以下方面: 1. 构建智能问答客服:用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 2. 知识问答系统:用户提出问题,RAG 可以从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到提示词中,提交给大模型,大模型的回答会充分考虑到“包含答案的内容”。
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。其训练主要依赖大量的文本数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。其训练需要多种类型的数据,包括文本、图片、音频等。 此外,还有相对规模较小的模型,这些模型通常是为完成特定任务而设计的。 大模型的应用场景包括: 1. 对于回答的精准性、全面性要求较高的问题,不同的大模型各有优劣,可兼听获取更好的答案。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
ai教育怎么应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动。如 AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 同时,使用人工智能辅助教育也存在一些挑战,如教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等。此外,使用人工智能获取信息和学习时,要注意可能产生的幻觉,对关键数据应根据其他来源仔细检查。
2025-01-07
部署Agent专属的web端应用
以下是关于部署 Agent 专属的 web 端应用的相关内容: 在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。 5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。 6. webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息仅供参考,您可根据自身需求选择适合的平台。
2025-01-07
将Agent应用钉钉平台
将 Agent 应用于钉钉平台的步骤如下: 1. 首先,您可以参考 Dify 接入微信的相关教程。在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录,进行对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景表现出色。 如果您想零基础模板化搭建 AI 微信聊天机器人,添加各种自定义 COW 插件到微信机器人,部署 COW 插件的步骤如下: 1. 直接点击 Apilot 平台以下位置来复制保存好 Apilot 的 API 令牌。 2. 在宝塔服务器创建一个 config.json 文件,将相关内容复制到文件中,注意更新 sum4all 和 Apilot 的两个 API 令牌。 3. 重新删掉之前正在跑的机器人服务,重新使用新的编排模板来跑微信机器人。 4. 运行过程中如需修改 config.json 文件里的配置,可在文件位置进行内容修改,修改保存后,在容器板块中对应在跑的机器人服务点击重启即可。 更多详细内容请访问相关原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-01-07
将Agent集成应用到公司网站、网站客服
将 Agent 集成应用到公司网站、网站客服可以按照以下步骤进行: 1. 搭建示例网站 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY。其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 智能体(Agent)的相关知识: 1. 智能体的应用: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 2. 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 一些好的 Agent 构建平台包括: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-07
将Agent应用到微信公众号、企业客服
将 Agent 应用到微信公众号和企业客服可以参考以下内容: Dify 接入企业微信的步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并进行对话测试。 5. 把工作流编排聊天助手接入微信,包括创建知识库、导入知识库文件、创建工作流编排聊天助手应用、设置知识检索节点和 LLM 节点、发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 基于 COW 框架的 ChatBot 在企业微信的实现步骤: 1. 准备:企微的接入方式是通过企业微信应用完成,只能企业内部人员使用,暂时无法在外部群中使用。需要的资源包括一台服务器(海外服务器,有国内代理接口的话可使用国内服务器)、注册一个企业微信(个人也可注册,只是无法认证),如果是认证的企业微信,还需要一个对应主体备案的域名。 2. 创建企业微信应用:首先在说明。
2025-01-07
大模型的实际应用有哪些?Agent?AI网站
大模型的实际应用包括以下方面: 1. 在影刀 RPA+AI Power 中的应用: 集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent。例如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 提供网页分享、对话助理、API 集成等无缝多样的使用方式,方便企业在不同业务场景下灵活选择接入方式,让内部员工、外部客户便捷地与 AI 交互。 为企业提供教学培训、技术答疑、场景共创等贴身的服务支持,帮助企业把产品用起来,把 AI 落地下去。 2. 在 Ranger 相关介绍中的应用: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”就是大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。目前行业里主要用到的是 langchain 框架,在 prompt 层和工具层完成相关设计。 3. 在大圣的相关介绍中的应用: 大模型的产品类型主要有 Copilot 和 Agent 两种。 Copilot 是辅助驾驶员,在帮助用户解决问题时起辅助作用,更多地依赖于人类的指导和提示来完成任务,功能局限于给定框架内,处理流程依赖于人类确定的静态流程,主要用于处理简单、特定的任务,开发重点在于 Prompt Engineering。 Agent 是主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更高的自主性和决策能力,解决问题的流程是由 AI 自主确定的动态流程,能够处理复杂、大型的任务,在 LLM 薄弱阶段使用工具或 API 增强,开发重点在于 Flow Engineering。
2025-01-07