Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

扣子智能体搭建

Answer

扣子是字节跳动旗下的 AI 应用开发平台,搭建扣子智能体的门槛较低,无论有无编程基础都能快速搭建基于 AI 模型的多样化问答 Bot。以下是关于扣子智能体搭建的一些信息:

  1. 菠萝作词家智能体:是一款专为音乐创作设计的智能辅助工具,能理解和分析用户输入的提示词、情感基调、歌曲主题等信息,生成符合要求的歌词内容。创建时需想一个名字,写一段详细介绍,然后点击确认。
  2. 竖起耳朵听智能体:创建需三步,首先起一个智能体的名称,然后写一段简单介绍,最后使用 AI 创建一个头像。
  3. Bot 智能体:在信息时代,可利用扣子这样的 AI agent 产品搭建 bot 智能体,根据个人需求抓取、整理资讯并推送到多个平台交互。其体现了 AI Agent 跨平台、多模态的自动化价值。您可通过以下链接查看相关演示和体验:

扣子还提供了丰富的插件、工作流、知识库等功能来增强 Bot 的能力和交互性。同时,AI 智能体的出现是为了解决如胡编乱造、时效性、无法满足个性化需求等问题,它包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。扣子官网:https://www.coze.cn/

Content generated by AI large model, please carefully verify (powered by aily)

References

扣子初体验——菠萝作词家

原文链接:https://developer.volcengine.com/articles/7388812375032430611作者:小哆啦[heading1]扣子是个啥[content]扣子是字节跳动旗下的AI应用开发平台,在这个平台上开发自己的智能体的门槛非常低,不管我们是否有编程基础,都可以在扣子平台上快速搭建基于AI模型的多样化问答Bot。扣子还提供了丰富的插件、工作流、知识库等功能来增强Bot的能力和交互性。[heading1]菠萝作词家解决的痛点?[content]菠萝作词家智能体,是一款专为音乐创作而设计的智能辅助工具。旨在帮助音乐人、作词家以及音乐爱好者轻松、高效地创作出高质量的歌词作品。它能够理解并分析用户输入的提示词、情感基调、歌曲主题等信息,然后运用其独特的算法和创意生成技术,快速生成符合要求的歌词内容。不管你是专业的音乐人还是刚开始尝试作词的朋友,菠萝作词家智能体都能成为你创作路上的好帮手。它会带给你全新的创作体验,帮你轻松解决创作的难题,让你的每首歌曲都充满灵感和魅力。[heading1]开始创建[content]扣子智能体的创建比较简单,首先我们需要想一个智能体的名字,然后写一段该智能体的介绍,越详细越好,因为它会根据你的介绍智能生成符合主题的图标。最后点击确认,一个新的智能体就诞生了。

我用扣子做一个简单的智能体——竖起耳朵听

原文链接:https://developer.volcengine.com/articles/7386988670428905510作者:法医[heading2]爆火的AI Agent[content]AI Agent也就是我们所说的AI智能体,那什么是AI智能体呢?简单来说就是拥有各项能力的打工人来帮我们做特定的事情。目前有不少大厂推出自己的AI智能体平台,像字节的扣子,阿里的魔搭社区等等,体验过GPT或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程了,相当于降低了编程的门槛,另外之前在使用GPT或者文心一言大模型的时候会出现胡编乱造的情况以及时效性、无法满足个性化需求等问题,如果这些不解决的话,AI很难被真正广泛应用,而AI智能体的出现正是解决这些问题的绝佳方式,AI智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以AI智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的AI智能体来解决自己的事情。[heading2]扣子Coze[content]📢扣子官网:[https://www.coze.cn/](https://www.coze.cn/)扣子(Coze),作为字节跳动旗下的新一代一站式AI Bot开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于AI模型的各类问答Bot。这些Bot的功能涵盖了从解决简单问答到处理复杂逻辑对话的广泛范围。当我们开发完成后,还可以将自己构建的Bot发布到各种社交平台和通讯软件上,让更广泛的用户群体能够与这些Bot进行交互聊天。[heading2]竖起耳朵听的创建[content]我们可以通过简单3步创建智能体,首先我们要起一个智能体的名称,然后写一段智能体的简单介绍,最后使用AI创建一个头像即可。

Bot智能体 | 用Coze实现【多模态资讯的跨平台推送】

原文链接:https://developer.volcengine.com/articles/7388464468457750591作者:AI研究室-宇哥[heading1]一【Bot简介】[content]在信息爆炸的时代,怎么破除信息茧房,高效获取到一手的最新资讯,实时跟进各行业的发展动向无疑是很重要的,同时也具有挑战的一件事情。现在有了扣子这样的AI agent产品,我们可以快速去搭建一个bot智能体,根据每个人不同需求和情况,去完成各种最新最热的资讯抓取,整理成文并推送到多个平台进行交互。真正体现AI Agent跨平台,多模态的自动化价值。Bot视频演示地址:[https://www.bilibili.com/video/BV1RLaGeAE7Z/?vd_source=baeb68724c9458d179387d4bce43931c](https://www.bilibili.com/video/BV1RLaGeAE7Z/?vd_source=baeb68724c9458d179387d4bce43931c)Bot体验地址:[https://www.coze.cn/store/bot/7386884942153957391?panel=1&bid=6d2j6kkj04019](https://www.coze.cn/store/bot/7386884942153957391?panel=1&bid=6d2j6kkj04019)

Others are asking
有扣子智能体搭建相关的课程吗
以下是与扣子智能体搭建相关的课程信息: 1. 无企业资质也能 coze 变现!手把手教你通过卖 Key 方式:Zion 威少模板跟着搭——支持上架多个智能体。上节课分享了如何用 Zion 把您的 Coze bot 打造成能赚钱的工具,包括前端页面设计和用户支付链路搭建等。点击回顾往期内容👉🏻,内含变现案例实操分享。针对常见难题,本期特别邀请了 Coze+Zion 独立开发者威少(B站:赛博画手威少@wei)开发的一个“Coze 变现模板(多智能体版)”,无需企业支付宝账号,个人用户也能轻松实现变现和收款。模板页面演示:https://coze.weishao.vip/ 。 2. 扣子案例合集社区内容分享: 3. 02 基础通识课: 智能纪要:本章节主要对整节分享进行复习。内容包括模型中数据集的清洗、抽取,rag 基于知识库存储数据到向量数据库方便检索,IAG 快速检索数据,编辑生成平台构建 prompt 的技巧,agent 概念,插件 pragin,运维平台,缓存机制,还提到大模型接入多家模型,以及 AI 改变工作流等。 智能章节:本章节主要介绍 AI 工程平台在日常生活中的帮助及使用方法。以扣子平台为例,其新版本有很多模板帮助学习。如名画照相馆工作流,能进行名画换脸操作。平台中的工作流程包含很多节点,且有多种插件工具,像必应搜索、链接读取、代码执行器等可供使用。本章节主要讲述代码方面更高阶需求可编写自己代码,提到知识库可存储文稿信息。重点介绍了一个名画处理工作流,包括开始节点的输入内容如用户照片、名画内容、性别等,工作流中涉及大模型意图分析、结构化整理、历史撰写以及图像生成模型等操作。
2025-01-04
扣子智能体搭建教程
以下是扣子智能体的搭建教程: 扣子是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。 搭建步骤如下: 1. 创建一个 Bot: 系统默认创建了一个 Personal 的个人团队,该团队内创建的资源例如 Bot、插件、知识库等无法分享给其他团队成员。您也可以创建团队或加入其他团队,更多信息,请参考。 进入团队空间后,默认打开 Bots 页面。 在 Bots 页面,单击创建 Bot。 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。 单击确认。Bot 创建后,您会直接进入 Bot 编排页面。您可以在左侧人设与回复逻辑面板中描述 Bot 的身份和任务。单击复制可使用模板格式添加描述。您可以在中间技能面板为 Bot 配置各种扩展能力。在右侧预览与调试面板中,实时调试 Bot。 2. 编写提示词: 配置 Bot 的第一步是编写提示词(Bot 的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Bot 根据 LLM 对提示词的理解来回答用户的问题。提示越清晰,就越符合预期。 在 Bot 配置页面的人设与回复逻辑面板中输入内容。例如:您可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考。 此外,通过简单 3 步也可以创建智能体:首先要起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。创建时,智能体的介绍越详细越好,因为它会根据您的介绍智能生成符合主题的图标。
2025-01-04
类似扣子的智能体创建平台还有哪些
以下是一些类似扣子的智能体创建平台: 1. 海外版 Coze(coze.com) 2. 百度 AppBuilder 3. 阿里通义千问 4. 智谱 AI 5. Dify.AI 此外,目前有不少大厂推出了自己的 AI 智能体平台,比如字节的扣子、阿里的魔搭社区等。智能体的出现旨在结合自身业务场景和需求,解决如 GPT 或文心一言大模型存在的胡编乱造、时效性及无法满足个性化需求等问题。它包含了自身的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,能够完成较为复杂的工作。
2024-12-31
类似扣子的智能体创建平台还有哪些
以下是一些类似扣子的智能体创建平台: 1. 海外版 Coze(coze.com) 2. 百度 AppBuilder 3. 阿里通义千问 4. 智谱 AI 此外,还有 Dify.AI 等平台。目前有不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,可以完成比较复杂的工作。
2024-12-31
类似扣子的智能体创建平台还有哪些
以下是一些类似扣子的智能体创建平台: 1. 海外版 Coze(coze.com) 2. 百度 AppBuilder 3. 阿里通义千问 4. 智谱 AI 此外,还有 Dify.AI 等平台。目前有不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,可以完成比较复杂的工作。
2024-12-31
类似扣子的智能体创建平台还有哪些
以下是一些类似扣子的智能体创建平台: 1. 海外版 Coze(coze.com) 2. 百度 AppBuilder 3. 阿里通义千问 4. 智谱 AI 此外,还有 Dify.AI 等平台。目前有不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,可以完成比较复杂的工作。
2024-12-31
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如非结构化的 PDF 数据、结构化的 SQL 数据、代码等,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,其基本流程为:首先,给定用户输入,如问题或话题,从数据源中检索出相关文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型,并包含提示指导模型生成期望输出。最后,从大模型输出中提取或格式化所需信息返回给用户。 此外,您还可以通过以下方式学习 RAG: 1. 观看视频演示,如: 2. 利用相关 Bot 进行学习,如: Query 改写效果对比 Bot:https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 RAG 全流程学习 Bot:结合大模型,模拟 RAG 的离线存储和在线检索全流程。 您还可以参考如何使用 LangChain 开发一个简单的 RAG 问答应用。
2025-01-06
知识库搭建流程
搭建知识库的流程通常包括以下几种情况: 本地部署大模型及搭建个人知识库: 1. 了解 RAG 技术:RAG 是利用大模型能力搭建知识库的应用,在需要依靠不在大模型训练集中的数据时,通过检索增强生成。其过程包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入转换为向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. 文本加载器:将用户提供的文本加载到内存中以便后续处理。 利用 Coze 搭建知识库: 1. 收集知识:确认知识库支持的数据类型,收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开的一些内容(可安装 Coze 提供的插件采集)。 2. 创建知识库。 3. 创建数据库用以存储每次的问答。 4. 创建工作流。 5. 编写 Bot 的提示词。 6. 预览调试与发布。 信息管理与知识体系构建: 1. 信息源的选择:明确需求和兴趣点,选择相关信息源,保证信息质量和相关性。 2. 信息通路的建立:通过工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制。 3. 知识结构化:使用笔记方法和工具,对收集的信息分类、标签化和链接,形成结构化知识体系,便于检索和应用。 4. 知识内化与应用:定期复习、思考和实践,将外部信息转化为个人知识,并在实际中应用解决问题。
2025-01-06
dify智能体搭建
搭建 Dify 智能体的步骤如下: 1. 理解智能体母体:智能体母体可视为智能体的原型或基础形式,是创建智能体的原始模板,通过它能衍生出众多子智能体。其设计和功能为子智能体的特定任务和特性提供基础,扩展了应用范围和多样性。 2. 准备提示词:分享了用于构建和定制子智能体的提示词,可直接复制应用到项目中以创建和优化智能体满足特定需求和目标。 3. 实践创建智能体母体: 登录后台系统,点击“工作室”按钮,进入智能体管理界面。 点击“创建空白应用”选项,选择“Agent”,输入智能体名称并点击“创建”按钮。 完成创建后,点击所创建的智能体,进入编排页面。调整模型,选择所需模型并设置温度及输出长度参数(默认输出长度通常为 512,常需调整),然后输入提示词,可使用准备好的提示词模板编排进智能体。 另外,在搭建 AI 智能体时,还可参考以下步骤: 1. 设计 AI 智能体架构。 2. 规定稍后读阅读清单的元数据:新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(收藏的默认态为“仅记录”)、“发布日期”、“收集时间”等。为方便操作,可直接复制准备好的模板:
2025-01-06
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,给定一个用户的输入,如问题或话题,RAG 会从数据源中检索出相关的文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型,并包含提示指导模型生成期望输出。最后,从大模型输出中提取或格式化所需信息返回给用户。 此外,还有相关的学习资源,如用 Coze 学习 RAG 的视频演示,包括 Query 改写效果对比 Bot 和 RAG 全流程学习 Bot 等。同时,也有关于如何使用 LangChain 开发简单 RAG 问答应用的介绍。
2025-01-06
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如非结构化的数据(包括 PDF)、结构化的数据(如 SQL)以及代码(如 Python、Java 等)。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,其基本流程为:首先,给定用户输入(如问题或话题),从数据源中检索出相关文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入,并添加提示传递给大模型(如 GPT)。最后,从大模型的输出中提取或格式化所需信息返回给用户。 您还可以通过以下资源进一步学习 RAG: 视频演示: Query 改写效果对比 Bot:https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 视频演示: RAG 全流程学习 Bot:
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
如何从0开始学习人工智能
以下是从 0 开始学习人工智能的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
在智能体。目录下的体验地址都打不开。为什么?怎么能打开?
很抱歉,暂时不清楚智能体目录下体验地址打不开的具体原因。可能是网络问题、服务器故障、链接失效等多种因素导致。您可以尝试以下方法: 1. 检查您的网络连接,确保网络稳定畅通。 2. 刷新页面或更换浏览器再次尝试访问。 3. 确认该体验地址是否仍在有效服务期内。 4. 若问题仍未解决,建议您联系相关技术支持人员获取帮助。
2025-01-06
在智能体目录下的体验地址为什么都打不开啊?
智能体快速创建需要以下 3 个步骤: 1. 选择智能体类型: 点击创建智能体。 在“从空白创建”中,选择合适的智能体类型,鼠标悬浮后,点击按钮。 对话型智能体一般用于角色扮演、智能客服、业务助理等场景,以对话形式与用户进行交互,体验链接:https://appcenter.bigmodel.cn/appcenter_v2/chat?share_code=mSBrkrJBKdyKPeeyLHLFi 。 文本型智能体一般用于文本写作、信息抽取、文案生成等场景,提供以单轮、多字段的输入形式进行交互,体验链接:https://appcenter.bigmodel.cn/console/appcenter_v2/chat?share_code=zOro1s77ljW4zqop8vMS 。 2. 在画布上配置节点。 但关于您提到的智能体目录下的体验地址打不开的问题,目前提供的信息中未明确相关原因,建议您检查网络连接是否正常,或者稍后再试。
2025-01-06
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并保持知识库准确成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”同义词。 以国际象棋计算机对弈程序为例,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需学习人类对局改进算法,后续采用基于案例的推理,现代能战胜人类棋手的程序基于神经网络和强化学习。 创建“会说话的程序”方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的独立处理对话模型,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。 您还可以思考如果人工智能得以实现,哪些任务可以交给计算机完成,比如金融、医学和艺术领域如今如何从人工智能中受益。
2025-01-06
智能化的前提条件是什么
智能化的前提条件包括以下方面: 以人为本:人工智能应作为人类的工具,最终目的是提高人类福祉,符合欧盟价值观、各项条约和《宪章》所载的基本权利和自由。 风险评估与规则制定:为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一的规则,且规则应与《宪章》等保持一致,并应当是非歧视性的,且符合欧盟的国际贸易承诺。 具体应用中的风险控制:在一些具体情况下,人工智能系统不会导致对特定领域法律利益造成重大损害的风险。例如,执行范围狭窄的程序性任务、改进先前完成的人类活动结果、检测决策模式或偏离情况、执行与所列目的相关评估的准备工作等的人工智能系统,因其任务特点带来的风险有限或降低了风险。 对人类思维方式的理解:要实现智能化,需要理解人类的思维方式,包括决策过程,区分下意识和推理过程等。 模拟人类智能的方法:如自上而下的符号推理方法模拟人类通过推理解决问题的方式,自下而上的神经网络方法模拟人脑结构,还有新兴的多智能体系统、进化方法或遗传算法等。
2025-01-06