Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

快速生成数据集

Answer

以下是两种快速生成数据集的方法:

方法一:通过数据分析器+dify

  1. 原始文档格式转换:利用第三方工具(如 wps)将原始文档转换成 txt 格式,特别注意在中文语言编码情况下,代码解释器对 TXT 的识别度较高。输出后打开 txt 文档,手动删除掉目录页。
  2. 代码解释器操作:
    • 导入文件到代码解释器,进行初步格式调整。
    • 重新调整格式。
  3. 导入 Dify 进行数据集训练:建议使用经济模式,高质量索引可能会出现错误,原因待解决。
  4. 创建 bot:
    • 创建并命名。
    • 点击提示词编排,输入提示词并设置上下文数据集。
    • 模型设置建议选择 claude2,对比 3.5 质量更高。
    • 进行测试。

方法二:在厚德云平台操作

  1. 进入厚德云-模型训练-数据集(https://portal.houdeyun.cn/sd/dataset)。
  2. 步骤一·创建数据集:
    • 在数据集一栏中,点击右上角创建数据集。
    • 输入数据集名称。
    • 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片没有打标文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。
    • Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。
    • 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,预览数据集的图片以及对应的标签。
  3. 步骤二·Lora 训练:
    • 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。
    • 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。
    • 触发词可有可无,取决于数据集是否有触发词。
    • 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。
    • 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。
    • 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图。
    • 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。
Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:通过数据分析器+dify 快速创建数据集

作者:小七姐可以在以下地址关注她,主页内容更丰富:[小七姐的prompt学习社群](https://t.zsxq.com/15KhQ0RE7)[heading2]流程[heading2]1、原始文档格式转换[content]利用第三方工具将原始文档转换成txt工具,经过测试,代码解释器对TXT的识别度较高,特别是中文语言编码情况下。这里使用的是wps的转换工具:输出后打开txt文档,手动删除掉目录页:[heading2]2、代码解释器操作[heading3]1、导入文件到代码解释器,进行初步格式调整[heading3]2、格式重新调整[heading2]3、导入Dify进行数据集训练[content]此处建议使用经济模式,高质量索引会出现错误,目前尚不清楚原因,待解决。[heading2]4、创建bot[heading3]创建并命名[heading3]点击提示词编排,输入提示词并设置上下文数据集[heading3]模型设置[content]此处建议选择claude2,对比3.5质量更高[heading3]测试[heading4]原始文档:[heading4]GPT3.5[heading4]claude2

10-0基础训练大模型

进入厚德云-模型训练-数据集https://portal.houdeyun.cn/sd/dataset[heading2]步骤一·创建数据集[content]在数据集一栏中,点a击右上角创建数据集输入数据集名称这个zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件(之后你可以在c站使用它的自动打标功能)你也可以一张一张单独上传照片,但还是建议提前把图片和标签打包成zip上传Zip文件里图片名称与标签文件应当匹配例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间确认创建数据集返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查可以预览到数据集的图片以及对应的标签[heading2]步骤二·Lora训练[content]点击Flux,基础模型会默认是FLUX 1.0D版本选择数据集,点击右侧箭头,会跳出你所有上传过的数据集触发词可有可无,取决于你的数据集是否有触发词模型效果预览提示词则随机抽取一个你数据集里的标签填入即可训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数如果不知道如何设置,可以默认20重复次数和10轮训练轮数可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力然后就可以等待训练了,会显示预览时间和进度条训练完成的会显示出每一轮的预览图鼠标悬浮到你想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地

小七姐-提示词

[小七姐:通过数据分析器+dify快速创建数据集](https://waytoagi.feishu.cn/wiki/XhWdw6UdUihr0EkJK8ScuFDdnOc)[小七姐:K12领域应用-儿童PBL项目Prompt](https://waytoagi.feishu.cn/wiki/EvrRwlyLviLcL6knFSdc8E40nl2)[小七姐:知识图谱自动生成的尝试](https://waytoagi.feishu.cn/wiki/LcAAwPUgiieXgfkQXy9c1avmnte)[小七姐:基于联网验证科学新闻的科普作者](https://waytoagi.feishu.cn/wiki/HPkewFMdniRe3MkOH6ocqFYZnNq)[小七姐:英文病例解读专家](https://waytoagi.feishu.cn/wiki/Nnwvw9K9Pikz2nkuMr5cweKDnbf)[小七姐:HR工具-通过连续对话生成JD和面试题参考](https://waytoagi.feishu.cn/wiki/W4uIwQczaiWMFAkd8RTc1ZRynvb)[小七姐:晚餐盲盒|经典的少样本提示和思维链提示的用法](https://waytoagi.feishu.cn/wiki/C3phwHkmJik4HSk1SVPcArrXncg)

Others are asking
AI生成视频
以下是关于 AI 生成视频的相关内容: Adobe 网站的生成视频相关操作: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 AI 视频生成的技术发展概况和应用场景思考: 长期以来,人们对 AI 视频技术应用的认知停留在各种“换脸”和视频特效上。随着 AI 图像领域的技术发展,AI 视频技术也逐渐取得了突破。从交互方式来看,当前 AI 视频生成主要可分为文本生成视频、图片生成视频、视频生成视频三种形式。一些视频生成方法是先生成静态关键帧图像,然后构建为视频序列。也存在直接端到端生成视频的技术,无需进行多阶段处理即可生成视频,如基于 GAN、VAE、Transformer 的方法。微软 NUWAXL 是通过逐步生成视频关键帧,形成视频的“粗略”故事情节,然后通过局部扩散模型(Local Diffusion)递归地填充附近帧之间的内容。
2025-01-06
国内有什么生成视频的AI应用么
以下是国内一些生成视频的 AI 应用: 1. 可灵:在 AI 视频生成领域表现出色,具有卓越的视频生成质量,生成的视频在画面清晰度、连贯性和内容丰富性上可与国际顶级模型媲美。生成速度快,处理效率高,且对国内用户的可访问性强,提供了便捷、稳定的使用体验。 2. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持多种控制,可生成不同时长和尺寸的视频。 4. ETNA:由七火山科技开发的文生视频 AI 模型,能根据简短文本描述生成相应视频内容,视频长度 8 15 秒,画质可达 4K,支持中文,时空理解。 更多的文生视频网站可以查看: 需注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如何生成一个人慢慢变成动物的视频?
以下是几种生成一个人慢慢变成动物的视频的方法: 1. 利用通义万相视频模型,例如生成“古风女孩从人变身成一只狐狸”的视频,您可以通过以下链接获取相关视频: 2. 在剪映中操作: 打开“数字人”选项,选取适合的数字人形象,如“婉婉青春”,添加数字人,软件会根据提供的内容生成对应音视频。 增加背景图片,删除先前导入的文本内容,上传本地图片并调整其位置和大小。 3. 使用 Runway 软件:将图片拖到 Runway 里面生成 4s 视频,进入 Runway 官网首页,点击 start with image,直接将图片拖进来,动画幅度尽量用 3,5 有时候会乱跑,不需要等进度条转完,可以直接继续往里放图片。(Runway 是收费的,您也可以找一下有没有免费的,或者去闲鱼或者淘宝买号)
2025-01-06
数据生成图表
以下是关于数据生成图表的相关内容: 使用 Coze 做一个智能报表助手的实现过程: 1. 用户上传 Excel 后,在工作流中获取 Excel 连接,通过插件下载并读取其中数据。 2. 最初打算将解析的 Excel 数据以单元格形式存到 bot 数据库,让大模型根据单元格数据和用户提问生成答案,但大模型计算能力差,常出错。 3. 改为将 Excel 转换为数据表,使用大模型把用户问题转换为 SQL,准确率高。 4. 自己写服务在动作流里调用,根据 Excel 的 URL 动态创建表并插入数据,将表名存到 Coze 数据库,以便后续根据表名动态执行 SQL 拿到数据。 5. 根据数据库表字段信息,使用大模型为用户生成 3 个推荐报表,限制数据 100 条。 6. 拿到 SQL 后,动态执行查询数据,再用大模型转换为绘制 Echarts 图表的参数。 7. 绘制图表,使用自己写的插件,放大图片三倍提高清晰度。 ChatGPT 助力数据分析的问题与技巧: 1. 在 user prompt 限定 SQL 和数据分析及其返回格式,而不用 system prompt,原因一是 system prompt 已承载表结构信息,二是 user prompt 遵循力度更高,让其承载具体返回格式更精确,操作在后端进行防止用户通过开发者工具查看参数。 2. 分开定义单维度数据和多维度数据的 prompt,而不直接让 GPT 判断,因为存在两种结果导向的 prompt 时,GPT 约有 50%几率出错,最好在发送请求前用条件运算符区分格式,代码判断后决定使用哪个 prompt 再传给 ChatGPT,让 prompt 只存在一种结果导向。 3. 前端渲染图表时,SQL 分析的接口或个性化分析解析的数据文件所获得的 tableData 格式与渲染表格相同为对象数组,让 GPT 判断出对象的 key 值映射:keyMap,得知维度、数据项、数据值的 key,就可拿到并处理成图表所需的 series、xAxis。 ChatGPT 助力数据分析的流程: 1. 第一个 user prompt 限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列:数据项、数据值,且不能直接查询长类型字段,可用 count/substring 等函数查询。 2. system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 3. 校验 GPT 生成的 SQL,不通过直接返回提示,通过再执行 SQL 查询数据。 4. 数据分析的 user prompt 提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。由于支持多维数据,采取分开定义单维度数据和多维度数据的 prompt,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt 再传递给 GPT。 5. 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。
2025-01-06
我想要生成一个logo,应该使用哪个工具
以下是一些可以生成 logo 的工具: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 此外,您还可以访问以下网站获取更多好用的工具: 另外,还有以下特定的工具和使用方法: 1. 超强 LOGO 生成器:设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定每张图片的参考权重。利用 GPT4 Vision 的识图能力提取图片关键特征生成新 logo,不满意可重新生成,创作完提示用户是否满意,满意则发送转 LOGO 矢量图。 2. ideogram:海外生图平台,早期以准确生成图片文字出名,目前有大量创作者生成各类创意 Logo,对英文字母生成友好,输入支持中文。使用方法是在首页信息流中找到中意的 Logo 款式,点进去 retry,替换提示词中字母部分,支持主流图片比例和主流风格选择。 3. liblib 及 esheep 在线工作流: 极简 Logo:进入极简 Logo Lora 生成页面 https://www.liblib.art/modelinfo/8db352bf5f6b4190841de341cb9eaa0c 。 毛绒风格 Logo:进入 https://www.esheep.com/app/9116?utm_source=app_tab 一键运行。 夏日冰冰凉风格 Logo:进入 https://www.esheep.com/app/8975?utm_source=app_tab 一键运行。
2025-01-06
能否实现,通过对话,了解一个人的生平,然后生成一个人的回忆录或者自传
目前通过对话来全面了解一个人的生平并生成其回忆录或自传具有一定的挑战性。虽然自然语言处理和人工智能技术在理解和处理语言方面取得了显著进展,但要准确、完整地捕捉一个人一生的复杂经历、情感和细节仍然存在困难。 然而,利用 AI 技术可以在一定程度上辅助这一过程。例如,可以通过与个人的多次深入交流,提取关键信息和重要事件,并运用语言生成模型来初步构建相关内容。但这需要大量的交互和精细的引导,并且生成的结果可能还需要人工进一步的编辑和完善,以确保其准确性和真实性。 总之,虽然完全依靠对话实现完美的个人回忆录或自传生成尚有难度,但 AI 可以作为一个有潜力的辅助工具来参与这一过程。
2025-01-06
如何快速正确的学习ai做自媒体
以下是关于如何快速正确地学习 AI 做自媒体的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 2. 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,关于如何用 AI 进行英语学习和数学学习: 英语学习 1. 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 使用自适应学习平台(如 Duolingo),利用 AI 技术量身定制学习计划,提供个性化的英语学习内容和练习。 4. 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习 1. 使用自适应学习系统(如 Khan Academy),结合 AI 技术提供个性化的数学学习路径和练习题,根据能力和需求精准推荐。 2. 利用智能题库和作业辅助工具(如 Photomath),通过图像识别和数学推理技术获取数学问题的解答和解题步骤。 3. 使用虚拟教学助手(如 Socratic),利用 AI 技术解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-04
小白如何快速系统学习 AI 应用
对于小白快速系统学习 AI 应用,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 开发实践: 从一个最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,梳理出产品需求文档。 接下来就是真正的实践,按照项目规划,学习一个 POC,将其应用到大项目中。当遇到错误时,复制错误信息、相关代码扔给 AI 让其找错误并修复,也可找文档或去 stackoverflow 上找答案,然后把这些信息提供给 AI 让其基于此修复。如有可能,找一个老师傅随时提供支援。
2025-01-03
AI 如何快速3D建模
以下是一些关于 AI 快速 3D 建模的信息和可用工具: GRM 可以在 0.1 秒内构建出物体或场景的 3D 模型,支持文本或图像直接转换成 3D 模型,并提供在线体验和项目演示。相关链接如下: 项目及演示:https://justimyhxu.github.io/projects/grm/ GitHub:https://github.com/justimyhxu/grm 在线体验:https://huggingface.co/spaces/GRMdemo/GRM https://x.com/imxiaohu/status/1774777805936689245?s=20 此外,还有以下图片生成 3D 建模工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 2. Meshy:功能全面,不仅支持文本生成 3D,还支持图片生成 3D 以及 AI 材质生成。用户可通过上传图片并描述需要的材质和风格来生成高质量的 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。用户可上传图片或输入文本提示词来生成 3D 模型。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能够将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
用AI快速解读一本书
以下是为您整合的相关内容: 在“AI 占卜”方面,有多种价格不同的体验项目,如 9.9 元的 AI 解读。流程是先想好问题再抽塔罗牌,摊主会先使用 AI 软件解读,然后在其基础上人工补充。例如对于“近期有偏财运吗”的问题,AI 解读提到代表着力量、决断和智慧,预示财运增加和经济状况改善。此外,活动现场还有手搓机器人摊位,这类似 DIY,需要电烙铁、钳子、螺丝刀等工具,适合亲子合作,能培养孩子兴趣和动手能力,增进亲子关系。 在“AI 辅助写小说”方面,南瓜博士让 AI 先写故事概要和角色背景介绍并做修改,然后以表格形式让 AI 输出细节描述,这样有打破叙事习惯、便于局部调整、确保细节具体等好处。之后将生成的表格依次复制粘贴让 AI 写文章,偶尔需要作者给建议。但在修改环节,GPT4 记性不好,Claude 把关键情节改没了。
2024-12-25
个人如何用Ai通过改写文案快速经营好公众号
目前知识库中没有关于个人如何用 AI 通过改写文案快速经营好公众号的相关内容。但一般来说,您可以利用一些自然语言处理的 AI 工具,如 ChatGPT 等,输入您的原始文案和具体的改写要求,获取新的文案。不过,在使用 AI 生成的文案时,需要您进行仔细的审核和修改,以确保内容符合公众号的定位和风格,同时保持高质量和独特性。另外,要经营好公众号,还需要关注内容的选题、排版、与读者的互动等多个方面。
2024-12-24
我应该具备哪些知识才能应用的AI呢?主要想使用AI开一家一人公司。学习AI比较快速的方法有哪些呢
要应用 AI 开一家一人公司,您可以从以下方面学习相关知识: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 6. Python 编程: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中工作的方式。 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 学习 AI 比较快速的方法包括: 1. 参加线上或线下的短期培训课程,有专业老师指导和答疑。 2. 阅读相关的权威书籍和教程,系统学习知识体系。 3. 实践项目,通过实际操作加深对知识的理解和应用能力。 4. 加入学习社区或论坛,与其他学习者交流经验和心得。
2024-12-23
数据可视化ai工具
以下是一些可以用于数据可视化的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在 Agent 相关比赛的赛道介绍中,数据可视化也是其中的一个重要方向,比如将复杂的数据进行可视化展示,用图表、信息图等方式使数据解读更直观、简洁。
2025-01-06
文字数据转成图表数据
很抱歉,目前知识库中没有关于文字数据转成图表数据的相关内容。但一般来说,要将文字数据转换为图表数据,您可以使用以下几种常见的方法和工具: 1. 使用电子表格软件,如 Excel 或 WPS 表格,将文字数据粘贴或输入到表格中,然后选择合适的图表类型进行生成。 2. 利用专业的数据可视化工具,如 Tableau、PowerBI 等,导入文字数据并进行图表创建和定制。 3. 如果您具备编程能力,可以使用 Python 中的相关库,如 matplotlib、seaborn 等,对文字数据进行处理和图表绘制。 您可以根据自己的需求和技能水平选择适合的方法。
2025-01-06
有数据分析方面的AI应用么
以下是一些数据分析方面的 AI 应用: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式的多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 AI 儿童安全座椅推荐系统:利用数据分析和机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅。 AI 汽车保养套餐推荐系统:结合数据分析和机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐。 AI 物流快递柜管理系统:借助数据分析和物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率。 AI 招聘面试模拟平台:运用自然语言处理和机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟。 AI 房地产装修设计平台:使用图像生成和机器学习,如酷家乐装修设计软件,为用户提供装修设计方案。 AI 游戏道具推荐系统:基于数据分析和机器学习,在一些游戏的内商城推荐功能中,根据玩家需求推荐游戏道具。 AI 天气预报分时服务:利用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报。 AI 医疗病历分析平台:通过数据分析和自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断。 AI 会议发言总结工具:运用自然语言处理和机器学习,如讯飞听见会议总结功能,自动总结会议发言内容。 AI 书法作品临摹辅助工具:借助图像识别和数据分析,如书法临摹软件,帮助书法爱好者进行临摹。
2025-01-06
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
数据集
以下是关于数据集的相关信息: 在厚德云创建数据集 步骤一: 1. 进入厚德云模型训练数据集,点击右上角创建数据集。 2. 输入数据集名称。 3. 可以上传包含图片+标签txt 的 zip 文件,也可以只有图片没有打标文件(之后可在 C 站使用自动打标功能),或者一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 4. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。 6. 返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,能预览到数据集的图片以及对应的标签。 步骤二:Lora 训练 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 5. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 6. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 OpenAI 发表新论文中的数据集 OpenAI 发表新论文《让我们一步一步验证》中提到的数据集:使用的数据集表明过程监控是高度准确的。PRM800K 训练集包含 800,000 个步骤级标签,可用于 12,000 个问题的 75,000 个答案。点击此处查看 PRM 和 ORM 实际数学精度的比较。在这两个结果中,可以看出使用 PRM 的模型给出了更好的结果。据报道,PRM 不仅在数学方面取得了更好的成绩,而且在化学和物理方面也取得了更好的成绩。 中文数据集 1. ,更新日期 42856,提供者为北京极目云健康科技有限公司,数据来源于其云医院平台的真实电子病历数据,共计 800 条(单个病人单次就诊记录),经脱敏处理,类别为电子病历,关键字为命名实体识别,论文地址无,备注为中文。 2. ,更新日期 2018 年,提供者为医渡云(北京)技术有限公司,CCKS2018 的电子病历命名实体识别的评测任务提供了 600 份标注好的电子病历文本,共需识别含解剖部位、独立症状、症状描述、手术和药物五类实体,类别为电子病历,关键字为命名实体识别,论文地址无,备注为中文。 3. ,提供者为 MSRA,标注形式为 BIO,共有 46365 条语料,类别为 Msra,关键字为命名实体识别,论文地址无,备注为中文。 4. ,提供者为人民日报,标注形式为 BIO,共有 23061 条语料,类别为 98 人民日报,关键字为命名实体识别,论文地址无,备注为中文。 5. ,提供者为玻森数据,标注形式为 BMEO,共有 2000 条语料,类别为 Boson,关键字为命名实体识别,论文地址无,备注为中文。
2025-01-04