Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想要一个能根据空白背景的产品图,生成不同视角的其他图片的AI工具,有相关产品吗?

Answer

目前比较成熟的能根据输入图片生成类似图片的 AI 工具主要有以下几种:

  1. Artguru AI Art Generator:这是一个在线平台,能够生成逼真图像,为设计师提供灵感,丰富创作过程。
  2. Retrato:是一款 AI 工具,可以将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。
  3. Stable Diffusion Reimagine:属于新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。
  4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果超级好。

需要注意的是,这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出,但仍存在一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有哪些好用的图生图产品?

目前比较成熟的通过输入图片生成类似图片的AI产品主要有:1.Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。2.Retrato:AI工具,将图片转换为非凡肖像,拥有500多种风格选择,适合制作个性头像。3.Stable Diffusion Reimagine:新型AI工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。4.Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的AI工具,将上传的照片转换为芭比风格,效果超级好。这些AI模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出。但仍有一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。内容由AI大模型生成,请仔细甄别

Others are asking
做小红书如何用ai
以下是在小红书使用 AI 的一些方法和案例: AI 绘画变现: 1. 用 AI 制作服装:如 AI 小绿裙,单价 239 卖了 1160 多份。熟练者可用 sd 或 mj 制作,新手可用 mewxai 或幻火。 2. 用 AI 定制萌娃的头像:单价 19.9,卖了 2675 份。适合执行力强的人,也可将单子转给别人抽成。 3. 用 AI 做手机壁纸:6 块钱,卖了 463 张。速度快的一天可做几十套,需用美图秀秀或醒图的手机壁纸模版排版。 利用 AI 节约内容创作时间: 开发“小红书文案专家”Bot,其功能价值在于能根据输入的网页链接或视频链接生成小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,10 倍节约文字内容创作时间。设计思路是基于痛点,为自己和团队设计工作流,让 AI 按照运营工作思路和流程打工。一期产品功能包括提取链接中的标题和内容、按照小红书风格整理内容、加入 emoji 表情包、为文案配图片等。二期计划功能包括增加全网搜索热点功能、提炼热点新闻或事件关键信息、结合用户需求输出文案和配图。
2025-02-03
国内头部的AI产品有哪些
国内头部的 AI 产品包括以下这些: 在 APP 端:夸克和豆包的历史总下载量已过亿。单月新增方面,夸克、豆包和 Kimi 智能助手月增长可达到千万级。DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万。用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端:月总访问量超千万的产品包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,夸克、Notion 和百度文库的 MAU 超过千万。 在生成 Logo 方面的 AI 产品有: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计。 LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入生成设计方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 此外,还有一些其他的 AI 产品,如 GPTs 用对话引导获取用户信息,Jasper 拆解场景流程按步骤收集信息,Leonardo 用画布和实时反馈加速 Prompt 提升,Novel 用交互式、渐进式续写,c.ai 卷生态卷模型,筑梦岛探索更多场景的对话玩法,FlowGPT 以 Prompt 的分享为核心,小悟空数据驱动优化 Prompt 等。这些产品致力于以更低的门槛帮助用户获得更高质量的 Prompt,从而更好地驱动模型。但当前阶段的 AI 产品还普遍体现出初级产品化、强行产品化的特征。
2025-02-03
ai小说推文
如果您想用 AI 把小说做成视频,可以参考以下内容: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,还有作者分享的经验,比如让 AI 一段一段进行细节描写,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。用让 AI 以表格的形式输出细节描述的重要技巧,这样做有打破 AI 原本叙事习惯、便于局部调整、确保内容都是具体细节等好处。之后把生成的表格依次复制粘贴,让 AI 照着写文章。但在修改过程中可能会遇到一些问题,如 GPT4 记性不好,Claude 改丢关键情节等。
2025-02-03
如何使用ai
使用 AI 可以通过以下方式实现不同的任务: 在阿里巴巴营销技巧和产品页面优化方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以获取关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:依靠 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:利用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:借助 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:依靠 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:使用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 安装灵码 AI 编程助手: 在配置 AI 插件之前,需要先安装 python 的运行环境。具体操作是点击左上角的 FileSettingsPluginsMarketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 利用 AI 写课题方面: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-02-03
如何学习AI知识
以下是新手学习 AI 知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-02-03
一个人如何开发ai应用
以下是关于一个人如何开发 AI 应用的指导: 首先,进行规划 POC 和开发路径。设计 POC 的小项目,比如“我是技术小白。我想要开发的项目功能如下。这里有哪些技术点?能否为我一一列举。请尽可能细化,帮我选择合适的技术方案,并为我设计 POC 项目。每个 POC 都应该是一个独立的项目,我好先通过完成 POC 来学会相关技术。”POC 即实验性小项目,其优点是足够小,AI 能直接生成。通过研究小项目、搞明白特定技术点的工作方式,便于后续在大项目中添加功能。这一步中,AI 可能会选取不合适的技术栈、拆分粒度不够细、开发路径设计不合理、没有循序渐进。如有可能,请老师傅把关。 接下来就是真正的实践。按照项目规划,学习一个 POC,并将其应用到大项目中;再学一个 POC,再运用。当遇到错误时,复制错误信息、相关代码,扔给 AI 让其找错误并修复。若使用可以识图的 claude 或 GPT4o,截图+错误信息+代码三件套会很好用。但可能会遇到一些问题,如开发 chrome 插件时,即便强调要用 manifest v3 的版本,AI 仍可能给出 v2 的代码及错误修复方案。此时,更有效的方式是找文档(可让 GPT 提供文档链接,或问 perplexity),或去 stackoverflow 上找答案(注意回答和评论的日期),然后把文档或找到的答案提供给 AI,让其基于这些信息修复,此时它给的指引会更正确且详细。当然,这一步如有老师傅支援更好。 另外,以证件照为例的 90 分钟从 0 开始打造第一个 Coze 应用的教学中,提到了 Code AI 应用的背景、现状以及学习过程,包括创建 AI 应用,学习操作界面、业务逻辑和用户界面,重点熟悉桌面网页版的用户界面等。
2025-02-03
我是IT产品和项目经理,如何通过学习成为AI产品经理
要从 IT 产品和项目经理转变为 AI 产品经理,可以参考以下步骤: 1. 入门级:通过 WaytoAGI 等开源网站或相关课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉传统互联网偏功能实现和偏商业运营的产品经理工作,最好能将两者结合。 3. 落地应用级:积累成功落地应用的案例,产生商业化价值。 AI 产品经理的岗位技能要求包括: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 总结来说,AI 产品经理要懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。同时,要关注场景、痛点、价值。
2025-02-02
字节有哪些AI产品
字节在 AI 领域推出了众多产品,包括从生产力到娱乐陪伴,从对话产品到 Agent 工具再到文生图等十几个 AI 应用,还推出了 AI 硬件,如今年 10 月能与豆包语音对话的 Ola Friend 耳机,近期还在研发 AI 眼镜。 生成 Logo 的 AI 产品有: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 AI 面试官的相关产品有: 1. 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和发送邀约。 2. 海纳 AI 面试:在线自动面试、评估,精准度高达 98%,效率提升 5 倍以上,改善候选人体验,到面率提升。 3. InterviewAI:在线平台,提供职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,收到评估、建议和得分。
2025-02-01
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
AI产品经理学习资料
以下是为您提供的 AI 产品经理学习资料: 一、AI 市场与 AI 产品经理分析 (一)入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 (二)研究级 有两个路径,一个是技术研究路径,一个是商业化研究路径。对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,最好是同一个人。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 (三)落地应用 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网 PM 也有三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 是工具和手段,产品经理要关注的还是场景、痛点、价值。 二、学习笔记:AI for everyone 吴恩达 (一)在企业中建构人工智能 1. 案例研究:智能扬声器 探测到触发词或唤醒词。 语音识别。 意图识别。 执行相关程序。 智能音箱面临需要对每一个用户提出的需求进行单独的程序编写导致花费大量资金教育客户的困境。 2. 案例研究:自动驾驶汽车 汽车检测,使用监督学习,识别前方车辆不仅需要前置摄像头,还包括后置与两侧的摄像头或者传感器,如雷达与激光雷达。 行人检测,使用相似的传感器与技术。 运动规划,规划行车路径,输出驾驶路径,速度。如匀速行驶在道路上或避开道路边停靠的车辆。 (二)人工智能团队的角色示例 1. 软件工程师,如智能音箱中的软件编程工作,团队中 50%以上的占比。 2. 机械学习工程师,创建 AB 的映射,或创建其他机械学习算法。搜集汽车图片,位置的数据,训练神经网络或深度学习算法,不断迭代,确保准确的输出。 3. 机械学习研究员,负责开发机械学习的前沿技术。可能需要发表论文,或专注于研究。 4. 应用机械学习科学家,负责学术文献或研究文献中研究前沿技术,并想办法找到技术解决面临的问题。 5. 数据科学家,检测数据并分析数据背后的意义,向团队成员与负责人展示数据分析得出的结论。 6. 数据工程师,整理数据,确保数据是安全,易被保存,读取。因为人工智能需要处理的数据极大,自动驾驶汽车每分钟都会制造好几个 GB 的数据。 7. AI 产品经理,帮助决定用 AI 做什么,什么是可行且有价值的。 三、刘海:「AI 提示词工程师」の见解和经验分享 (一)入门第一步:AI 提示词工程师 岗位技能要求: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。产品经理的工作内容(仅作参考):
2025-01-26
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
如何用midjourney生成等距视角的,二次元画风的 房间内饰参考设计图
以下是使用 Midjourney 生成等距视角、二次元画风的房间内饰参考设计图的一些方法和关键词示例: 1. 欧式风格:Interior Design,European style,home with desk,lamp,bookshelf,wooden board 2. 极简风格:Minimalist style,floortoceiling Windows,living room,Architecture 3. 独有风格(Explode 艺术家):Explode+物体描述词+by Nychos(这位艺术家画风具有放射性) 4. 字符艺术:描述物体+ASCII art 5. 欧普艺术:Op art portrait+描述文字 6. 粘土风格(图标):Tiny cute isometric(等距)+(物体)+maxemoji,soft lightingsoft pastel colors+3Dicon+clay+blender 3d+名人画风(或者背景颜色) 需要注意的是: 1. 等距+物体+maxemoji,soft lightingsoft pastel colors/pastel background+3Dicon+clay+blender 3d+背景颜色=等距粘土物体 2. yasuko blythe dolls(安子布莱斯娃娃/也可以换成其他知道的娃娃名称)+灯光/颜色/背景/材质+clay(粘土)+style Yoshitomo Nara(良奈吉友画风/或者其他名人风格)=人偶
2024-08-14
抽象理解用户视角的半监督模式
半监督学习是一种机器学习模式,它结合了有监督学习和无监督学习的特点。在半监督学习中,模型可以同时使用标记数据和未标记数据进行训练。标记数据通常是指已经被人类标注或分类的数据,而未标记数据则是指没有被人类标注或分类的数据。通过使用半监督学习,模型可以利用未标记数据中的信息来提高其性能和泛化能力。 从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式。在传统的有监督学习中,模型需要大量的标记数据来进行训练,这通常需要人类专家进行手动标注,这是一个非常耗时和昂贵的过程。而在半监督学习中,模型可以利用未标记数据来进行训练,这可以减少对标记数据的需求,从而降低了数据标注的成本。此外,半监督学习还可以提高模型的泛化能力,因为模型可以从更多的数据中学习到更多的信息。 半监督学习的另一个优点是,它可以更好地处理现实世界中的数据。在现实世界中,大量的数据通常是未标记的,例如社交媒体数据、图像数据和音频数据等。通过使用半监督学习,模型可以利用这些未标记数据来进行训练,从而更好地处理现实世界中的数据。 总的来说,半监督学习是一种非常有前途的机器学习模式,它可以提高模型的性能和泛化能力,同时减少对标记数据的需求,从而降低了数据标注的成本。从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式,它可以更好地处理现实世界中的数据。
2024-05-06