Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在线性规划优化时,如何设置几个参数选最优参数的优化条件

Answer

在线性规划优化中,设置最优参数的优化条件需要考虑以下几个方面:

  1. 目标函数:首先需要明确线性规划问题的目标函数,即需要最大化或最小化的目标。根据目标函数的形式,可以选择不同的优化条件。
  2. 约束条件:线性规划问题通常受到一系列约束条件的限制,这些约束条件可以是等式约束或不等式约束。在设置优化条件时,需要考虑这些约束条件,以确保解的可行性。
  3. 决策变量:决策变量是线性规划问题中需要优化的参数。在设置优化条件时,需要确定决策变量的范围和取值,以确保解的可行性和最优性。
  4. 参数选择:在设置优化条件时,需要考虑如何选择参数以获得最优解。这可以通过敏感性分析、参数扫描等方法来实现。
  5. 算法和工具:最后,需要选择适当的算法和工具来求解线性规划问题。不同的算法和工具可能具有不同的优缺点,需要根据具体问题选择最适合的方法。

总之,设置最优参数的优化条件需要综合考虑目标函数、约束条件、决策变量、参数选择和算法工具等因素。通过合理选择优化条件,可以提高线性规划问题的求解效率和质量。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,可实时观测训练效果。“sample every n steps”为 50 代表每 50 步生成一张样图,prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,收敛得慢;数值越小,训练速度越慢,内存占用越小,收敛得快。以 512×512 的图片为例,显存小于等于 6g,batch size 设为 1;显存为 12g 以上,batch size 可设为 4 或 6。增加并行数量时,通常也会增加循环次数。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 即 1 除以 10 的 4 次方,等于 0.0001;1e 5 即 1 除以 10 的 5 次方,等于 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。少量参数微调则只对部分模型参数进行训练。从成本和效果的综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而非像提示工程和 RAG 那样仅更改提示,能大幅提高模型在特定任务中的性能。微调有两大好处:一是提高模型在特定任务中的性能,可输入更多示例,经过微调的模型可能会失去一些通用性,但对于特定任务会有更好表现;二是提高模型效率,实现更低的延迟和成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 关于微调的具体实现,LoRA 微调脚本见:。 在微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。调整超参数通常可产生更高质量输出的模型,可能需要配置的内容包括:model(要微调的基本模型的名称,可选择“ada”“babbage”“curie”或“davinci”之一)、n_epochs(默认为 4,训练模型的时期数)、batch_size(默认为训练集中示例数量的 0.2%,上限为 256)、learning_rate_multiplier(默认为 0.05、0.1 或 0.2,具体取决于 final batch_size)、compute_classification_metrics(默认为假,若为 True,为对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标)。要配置这些额外的超参数,可通过 OpenAI CLI 上的命令行标志传递。 OpenAI 官方微调教程:
2025-01-06
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,“sample every n steps”为 50 代表每 50 步生成一张样图。Prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,但收敛得慢;数值越小,训练速度越慢,内存占用越小,但收敛得快。显存小于等于 6g 时,batch size 设为 1;显存为 12g 以上时,batch size 可设为 4 或 6。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 实际为 1 除以 10 的 4 次方,即 0.0001;1e 5 为 1 除以 10 的 5 次方,即 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
高效微调技术-LoRA 全量微调与少量参数微调
以下是关于高效微调技术 LoRA 全量微调与少量参数微调的相关信息: LoRA 微调: 微调脚本: 脚本见: 具体实现代码见: 单机多卡的微调可以通过修改脚本中的include localhost:0来实现。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。 通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 全量参数微调: 微调脚本: 脚本见: 具体实现代码见: 加载微调模型: 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,关于微调还有以下补充信息: 微调模型意味着改变模型的权重,现在微调变得越来越容易,因为开发了许多技术并建立了代码库。 像 LoRA 这样的参数高效微调技术只训练模型的小部分稀疏片段,模型大部分保持基础模型状态,效果好且成本低。 微调技术上更为复杂,需要更多技术专业知识,包括人工数据合同承包商的数据集和复杂的合成数据流程,会减慢迭代周期。 SFT(有监督的微调)相对简单明了,RLHF(基于人类反馈的强化学习)则是非常研究性的领域,难度大,不适合初学者。 目前除了传统的全量训练和 freeze 冻结某些层方式,还发展出了很多种高效的微调方法,如 LoRA、Prefix Tuning、PTuning、Prompt Tuning、AdaLoRA、3、MultiTask Prompt Tuning 等。本篇主要采用 LoRA 方式,主要思路是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调主要分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。全量参数微调脚本见:。 少量参数微调则只对部分模型参数进行训练。从成本和效果的角度综合考虑,PEFT 是目前业界比较流行的微调方案。OpenAI 官方微调教程: 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而不是像提示工程和 RAG 那样仅仅更改提示,来大幅提高模型在特定任务中的性能。把微调想象成把通用工具打磨成精密仪器。 微调有两大好处: 1. 提高模型在特定任务中的性能。微调意味着可以输入更多的示例。可以在数以百万计的代币上进行微调,而少量学习提示仅限于数以万计的代币。经过微调的模型可能会失去一些通用性,但对于其特定任务而言,应该期待它有更好的表现。 2. 提高模型效率。LLM 应用程序的效率意味着更低的延迟和更低的成本。实现这一优势有两种方法。通过专门化模型,可以使用更小的模型。此外,由于只对输入输出对进行训练,而不是对完整的提示及其任何提示工程技巧和提示进行训练,因此可以舍弃示例或指令。这可以进一步改善延迟和成本。 在微调中,超参数的选择也很重要。我们选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。但调整用于微调的超参数通常可以产生产生更高质量输出的模型。特别是,可能需要配置以下内容: 1. model:要微调的基本模型的名称。可以选择“ada”、“babbage”、“curie”或“davinci”之一。要了解有关这些模型的更多信息,请参阅文档。 2. n_epochs 默认为 4。训练模型的时期数。一个纪元指的是训练数据集的一个完整周期。 3. batch_size 默认为训练集中示例数量的 0.2%,上限为 256。批量大小是用于训练单个正向和反向传递的训练示例数。总的来说,我们发现更大的批次大小往往更适用于更大的数据集。 4. learning_rate_multiplier 默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。微调学习率是用于预训练的原始学习率乘以该乘数。建议使用 0.02 到 0.2 范围内的值进行试验,以查看产生最佳结果的值。根据经验,我们发现较大的学习率通常在较大的批量大小下表现更好。 5. compute_classification_metrics 默认为假。如果为 True,为了对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标(准确性、F1 分数等)。要配置这些额外的超参数,请通过 OpenAI CLI 上的命令行标志传递它们。 LoRA 微调脚本见:加载预训练模型参数和微调模型参数,以下示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。
2025-01-06
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
有哪些优化文章句子的app
以下是一些优化文章句子的 app: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 此外,还有一些 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,同时保持原意。 3. Latex:虽不是纯粹的 AI 工具,但广泛用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 而辅助写邮件的 AI 工具包括: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言。网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,适用于改善写作风格和简洁性。网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,适合专业写作者。网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,适合需要快速创作和灵感的用户。网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。
2025-01-06
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
rag高级优化
以下是关于 RAG 高级优化的相关内容: RAG 是一种结合信息检索和文本生成能力的技术,由检索器和生成器两部分组成。在生成式 AI 的发展中,RAG 发挥着重要作用。 在模型开发方面,新兴的推理技术如连锁思考、树状思考和反射正在提高模型执行更复杂推理任务的能力,缩小客户期望与模型能力的差距。迁移学习技术如 RLHF 和微调变得更加可用,开发者可从 Hugging Face 下载开源模型并微调以实现优质性能。检索增强生成(RAG)引入关于业务或用户的上下文,减少幻觉并增加真实性和实用性,像 Pinecone 这样的公司的向量数据库成为 RAG 的基础设施支柱。新的开发者工具和应用框架为创建更先进的 AI 应用提供了帮助。 对于 RAG 的改进策略和方法,在检索有用信息方面,可通过优化索引来实现。比如按照子部分索引,将文本块再拆分为较小的文本进行多次索引,适用于有多个主题和冲突信息的复杂长文本;按照文本框可以回答的问题索引,让 LLM 生成假设性问题用于索引,适用于用户问题不明确的场景;按照文本块的摘要进行索引,适用于文本框中有多余或无关细节的情况。此外,在重排 rerank 方面,大部分场景下选择最相似的信息即可。 在商业化问答场景中,有时大模型的回答会不准确,如出现牛头不对马嘴、报价错误、胡编乱造等情况。优化 AI 更准确回答问题的过程称为 RAG,了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,可达到最佳效果。
2025-01-02
RAG优化
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 大语言模型(LLM)需要 RAG 进行检索优化,原因在于 LLM 存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,对其接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,无学习风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,结合模型理解能力可降低大模型输出出错可能。 4. 知识库存储用户数据便于管控隐私,且可控、稳定、准确。 5. 数据库维护可降低大模型训练成本。 在商业化问答场景中,优化 AI 更准确回答问题的过程称为 RAG。RAG 由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息生成精确连贯的答案,适合处理需要广泛知识的任务。 目前,业界针对 RAG 的优化主要围绕“问题输入”“检索相关信息”“生成回复”这三个环节开展,如通过 COT 等方式提升 LLM 对问题的理解程度,使用特定方式提升语义搜索准确率,选择和优化 embedding 算法保留原始数据信息。但即便每个环节优化到 90%,最终准确率也只有 72%。有一种不用向量也可以 RAG 的方法,基于结构化数据和 LLM 的交互,具有准确、高效、灵活、易扩展等优势。
2025-01-02
提示词优化
以下是关于提示词优化的相关内容: 1. 相关资源: https://github.com/Airjen/OneButtonPrompt 可实现自动丰富关键词。 https://github.com/adieyal/sddynamicprompts 涉及动态的提示词。 https://github.com/Physton/sdwebuipromptallinone 提供一件翻译功能。 2. PixVerse V2.5 提示词技巧(进阶篇): 基础公式:主体+主体描述+运动+环境。 进阶优化:在实际生成中,仅靠基础公式不能完全满足需求,需对提示词进一步扩展,使描述更详细。 示例:如“一只小狗在草地上散步”可拓展为“一只金色毛发的狗悠然自得地在阳光洒满的草地上行走,草叶轻轻地在它的爪下弯曲。微风拂过,它的毛发随风轻动,时不时低下头嗅闻着大地。远处,夕阳的余晖拉长了影子,营造出一种宁静祥和的氛围”。增加对各部分的详细描述,能使生成的视频更遵守提示词,更稳定,提升美感。 3. Claude2 中文精读中的提示词优化: 优化提示类似于进行一系列实验,进行测试、解释结果,然后根据结果调整变量(提示或输入)。 当 Claude 在测试中失败,尝试确定失败原因,调整提示词以解决失败点。 调整提示词的方式包括更明确地编写规则或添加新规则,通过在提示中添加类似示例和规范输出向 Claude 展示如何正确处理示例。 当 Claude 在某一类型输入上表现良好,尝试使用另一种输入类型,确保尝试极端情况。 在提示词中添加规则和示例,直到在具有代表性的输入集合上取得良好表现,建议进行“保留测试”。
2024-12-31
AI 修正中文错字和排版优化
以下是关于 AI 修正中文错字和排版优化的相关内容: 在文章排版方面,若想利用 AI 提效,可参考以下方法: 对于需要加粗的内容,可向 GPT 说明选择,待其输出排版后的文章,点击「复制代码」并粘贴到微信 Markdown 排版器中。 一些流行的 AI 文章排版工具包括: Grammarly:不仅能检查语法和拼写,还提供排版功能,可改进文档风格和流畅性。 QuillBot:能改进文本清晰度和流畅性,同时保持原意。 Latex:虽不是纯粹的 AI 工具,但在学术论文排版中广泛使用,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 使用特定的 AI 排版方法时,如利用 ChatGPT4o 进行 Markdown 排版,需注意:若不熟悉 ChatGPT4o 或 Markdown 语法,或自身有加粗重点句子的习惯,可不采用此方法,应追求高效而非刻意使用 AI。首先打开 GPTs https://chatgpt.com/g/gauDv1yCnbwenzhangmarkdownpaibandashi ,若无法打开可跳过。接着将从迅捷 Markdown 编辑器复制的文章内容发送给 GPTs,GPT 会先分析原文并列出需加粗和引用的句子让您确认。 需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-29
小白学习 AI 的最优路径是什么
对于小白学习 AI,以下是一些建议的最优路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。对于纯小白,学习资源大多免费开源,可在有空的时候学习,根据自己的兴趣在 waytoAGI 社区发现并学习最新内容。 对于像开发应用这样的实践,以纯小白开发 Unity 程序为例,需要人类导师把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人,同时通过能直接搞定的小项目先学明白背后的原理,在此基础上开发复杂项目。
2025-01-03
目前最优秀的PPT制做AI应用有哪些?
目前较为优秀的 PPT 制作 AI 应用有以下几种: 1. 国内: 爱设计 PPT:在国内众多 PPT 类 AI 产品中表现出色。其背后有强大的团队,技术过硬且对市场需求有敏锐洞察力,成功把握住了 AI 与 PPT 结合的市场机遇,已确立市场领先地位。对于经常制作 PPT 的商务人士、教育工作者、学生等都是值得尝试的工具。 2. 国外及其他: Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式增强吸引力,网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-28