Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG优化

Answer

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。

大语言模型(LLM)需要 RAG 进行检索优化,原因在于 LLM 存在一些缺点:

  1. LLM 无法记住所有知识,尤其是长尾知识,对其接受能力不高。
  2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。
  3. LLM 的输出难以解释和验证,存在黑盒、不可控及受幻觉干扰等问题。
  4. LLM 容易泄露隐私训练数据。
  5. LLM 的规模大,训练和运行成本高。

RAG 具有以下优点:

  1. 数据库对数据的存储和更新稳定,无学习风险。
  2. 数据库的数据更新敏捷,可解释且不影响原有知识。
  3. 数据库内容明确、结构化,结合模型理解能力可降低大模型输出出错可能。
  4. 知识库存储用户数据便于管控隐私,且可控、稳定、准确。
  5. 数据库维护可降低大模型训练成本。

在商业化问答场景中,优化 AI 更准确回答问题的过程称为 RAG。RAG 由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息生成精确连贯的答案,适合处理需要广泛知识的任务。

目前,业界针对 RAG 的优化主要围绕“问题输入”“检索相关信息”“生成回复”这三个环节开展,如通过 COT 等方式提升 LLM 对问题的理解程度,使用特定方式提升语义搜索准确率,选择和优化 embedding 算法保留原始数据信息。但即便每个环节优化到 90%,最终准确率也只有 72%。有一种不用向量也可以 RAG 的方法,基于结构化数据和 LLM 的交互,具有准确、高效、灵活、易扩展等优势。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:RAG 是什么?

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。[heading2]为什么LLM需要RAG?[content]众所周知,大模型已经在很多领域和问题下都取得了很好的效果,那为什么还需要RAG进行检索优化呢?[heading3]LLM的缺点[content]1.LLM无法记住所有知识,尤其是长尾的。受限于训练数据、现有的学习方式,对长尾知识的接受能力并不是很高;长尾数据是指数据集中某些类别数量较少,而其他类别样本数较多的不平衡“长尾”状态。例如在自然语言处理中,一些少见的词汇出现频率很低,而常见的词汇出现频率很高。2.LLM的知识容易过时,而且不好更新。只是通过微调,模型的接受能力其实并不高而且很慢,甚至有丢失原有知识的风险;3.LLM的输出难以解释和验证。一方面最终的输出的内容黑盒且不可控,另一方面最终的结果输出可能会受到幻觉之类的问题的干扰;4.LLM容易泄露隐私训练数据。用用户个人信息训练模型,会让模型可以通过诱导泄露用户的隐私;5.LLM的规模大,训练和运行的成本都很大。[heading3]RAG的优点[content]1.数据库对数据的存储和更新是稳定的,不像模型会存在学不会的风险。2.数据库的数据更新可以做得很敏捷,增删改查可解释,而且对原有的知识不会有影响。3.数据库的内容是明确、结构化的,加上模型本身的理解能力,一般而言数据库中的内容以及检索算法不出错,大模型的输出出错的可能就大大降低。4.知识库中存储用户数据,为用户隐私数据的管控带来很大的便利,而且可控、稳定、准确。5.数据库维护起来,可以降低大模型的训练成本,毕竟新知识存储在数据库即可,不用频繁更新模型,尤其是不用因为知识的更新而训练模型。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

开发:LangChain应用开发指南-不用向量也可以RAG

综上所述,我们可以得到这样一个公式,由于这三个环节是串行的,准确率最终是三者的乘积,因而任何一个环节的短板都将导致整体的准确率完全无法保证。目前来看,业界针对RAG的优化也主要是围绕这三个环节开展通过COT等方式提升LLM对问题的理解程度使用sentence window retrive、rerank等方式提升语义搜索的准确率通过针对的选择和优化embedding算法来最大化的保留原始数据的信息。然而由于最终结果是三者的乘积,即便是耗费大量精力将每个环节都优化到90%,最终乘积也只有72%。那么,有没有一种方法,可以避免数据向量化和语义搜索的问题,直接利用原始数据和LLM的交互,提高RAG的准确率和效率呢?本文的目的就是介绍一种不用向量也可以RAG的方法,它基于结构化数据和LLM的交互,实现了一种新颖的RAG模式,具有准确、高效、灵活、易扩展等优势。

Others are asking
RAG-Fusion
RAG(检索增强生成)是由 Lewis 等人于 2020 年中期提出的一种大语言模型领域的范式。 大型语言模型如 GPT 系列虽在自然语言处理方面取得显著成功,但仍存在局限性,如处理特定领域或高度专业化查询时易产生错误信息或“幻觉”,尤其在查询超出训练数据或需要最新信息时。 RAG 将外部数据检索整合到生成过程中,包括初始的检索步骤,查询外部数据源获取相关信息后再回答问题或生成文本,这不仅为后续生成提供信息,还能确保回答基于检索证据,从而显著提高输出的准确性和相关性。其演进轨迹分为四个阶段。 在 2017 年创始阶段,重点是通过预训练模型吸收额外知识增强语言模型。 RAG 能解决大语言模型知识局限性、幻觉问题和数据安全性等问题,可让大模型从权威知识源检索组织相关信息,更好控制文本输出,且能与微调结合使用。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。 LangChain 是用于构建高级语言模型应用程序的框架,提供一系列工具和组件,RAG 作为技术可在 LangChain 框架内实施利用,两者关系包括:LangChain 提供实现 RAG 必需的工具和组件;允许通过模块化组件构建 RAG 应用;简化 RAG 应用开发过程;利用其实现 RAG 可提高性能;支持构建复杂的 RAG 应用。
2025-01-02
rag高级优化
以下是关于 RAG 高级优化的相关内容: RAG 是一种结合信息检索和文本生成能力的技术,由检索器和生成器两部分组成。在生成式 AI 的发展中,RAG 发挥着重要作用。 在模型开发方面,新兴的推理技术如连锁思考、树状思考和反射正在提高模型执行更复杂推理任务的能力,缩小客户期望与模型能力的差距。迁移学习技术如 RLHF 和微调变得更加可用,开发者可从 Hugging Face 下载开源模型并微调以实现优质性能。检索增强生成(RAG)引入关于业务或用户的上下文,减少幻觉并增加真实性和实用性,像 Pinecone 这样的公司的向量数据库成为 RAG 的基础设施支柱。新的开发者工具和应用框架为创建更先进的 AI 应用提供了帮助。 对于 RAG 的改进策略和方法,在检索有用信息方面,可通过优化索引来实现。比如按照子部分索引,将文本块再拆分为较小的文本进行多次索引,适用于有多个主题和冲突信息的复杂长文本;按照文本框可以回答的问题索引,让 LLM 生成假设性问题用于索引,适用于用户问题不明确的场景;按照文本块的摘要进行索引,适用于文本框中有多余或无关细节的情况。此外,在重排 rerank 方面,大部分场景下选择最相似的信息即可。 在商业化问答场景中,有时大模型的回答会不准确,如出现牛头不对马嘴、报价错误、胡编乱造等情况。优化 AI 更准确回答问题的过程称为 RAG,了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,可达到最佳效果。
2025-01-02
rag教程有吗
以下为您提供关于 RAG 的教程: 首先,有一篇题为“胎教级教程:万字长文带你理解 RAG 全流程”的文章。作者大圣指出这是面向普通人的 RAG 科普,而非技术向文章。文章强调 RAG 技术在当前 AI 发展中的重要性,其衍生产品能为企业和个人带来效率提升,但也存在局限性。作者希望通过阐述 RAG 完整流程,让读者全面认知该技术,管理好预期,在使用相关产品时能充分发挥其潜力。适合包括 AI 爱好者、企业老板、AI 产品经理等人群。 其次,“【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有‘小白’讲透 RAG 的实例教程(上篇)”中提到,通过一个简单的问答示例展示了有时回答不准确的情况,从而引出 RAG 这一优化回答的专业术语。接着介绍了基础概念,RAG 即检索增强生成,由检索器和生成器组成,适合处理需要广泛知识的任务。 最后,在“胎教级教程:万字长文带你理解 RAG 全流程”中还提到了 RAG 全貌概览。RAG 流程分为离线数据处理和在线检索两个过程,离线数据处理构建知识库,在线检索则是利用知识库和大模型进行查询。以构建智能问答客服为例来了解 RAG 流程中的 What 与 Why 。
2024-12-30
RAG搜索
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。以下是关于 RAG 的详细介绍: 背景:大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,RAG 应运而生。 过程: 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据、Python 等代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM,生成更合理的答案。 核心组件:分为检索、增强、生成三部分。其中检索是核心组件之一,负责从外部数据源或知识库中获取与用户查询相关的信息,其质量和效率对 RAG 系统性能至关重要。涉及检索策略、检索粒度、检索方法、检索效率、外部数据源等关键概念和技术。 引入方式:可以从 AI 搜索切入来理解 RAG。AI 大模型擅长语义理解和文本总结,但不擅长获取实时信息;搜索引擎擅长获取实时信息但信息分散。AI 与搜索引擎结合,给 AI 配备知识库,类似于 RAG 原理。
2024-12-27
dify 实现rag
Dify 是一个开源的大规模语言模型(LLM)应用开发平台,具有以下特点和优势: 1. 配备 RAG 引擎,允许用户编排从代理到复杂 AI 工作流的 LLM 应用。 2. 关键特性: 快速部署,5 分钟内可部署定制化的聊天机器人或 AI 助手。 创意文档生成,能从知识库生成清晰、逻辑性强且无长度限制的文档。 长文档摘要,可轻松对长文档进行摘要。 自定义 API,能安全连接业务知识,解锁更深层次的 LLM 洞察。 连接全球 LLM。 生产就绪,比 LangChain 更接近生产环境。 开源,可被社区广泛使用和改进。 3. 资源获取:可从 Dify 的 GitHub 仓库(https://github.com/langgenius/dify.git 和 https://docs.dify.ai/)获取源代码、文档、安装指南、使用说明和贡献指南等资源。 4. 是一个结合后端即服务和 LLMOps 理念的平台,为用户提供直观界面快速构建和部署生产级别的生成式 AI 应用,具备强大工作流构建工具、广泛模型集成、功能丰富的提示词 IDE 及全面的 RAG Pipeline 用于文档处理和检索,允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,个人研究可单独使用,企业级落地项目推荐多种框架结合。 5. 官方手册:https://docs.dify.ai/v/zhhans
2024-12-25
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 其核心目的是为大语言模型(LLM)提供额外的、来自外部知识源的信息,通过检索模式为大语言模型的生成提供帮助,使生成的答案更符合要求。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受训练数据和学习方式限制,对长尾知识接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉问题干扰的情况。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,加上模型理解能力,降低大模型输出出错可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 RAG 由一个“检索器”和一个“生成器”组成,检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
2024-12-25
提示词优化
以下是关于提示词优化的相关内容: 1. 相关资源: https://github.com/Airjen/OneButtonPrompt 可实现自动丰富关键词。 https://github.com/adieyal/sddynamicprompts 涉及动态的提示词。 https://github.com/Physton/sdwebuipromptallinone 提供一件翻译功能。 2. PixVerse V2.5 提示词技巧(进阶篇): 基础公式:主体+主体描述+运动+环境。 进阶优化:在实际生成中,仅靠基础公式不能完全满足需求,需对提示词进一步扩展,使描述更详细。 示例:如“一只小狗在草地上散步”可拓展为“一只金色毛发的狗悠然自得地在阳光洒满的草地上行走,草叶轻轻地在它的爪下弯曲。微风拂过,它的毛发随风轻动,时不时低下头嗅闻着大地。远处,夕阳的余晖拉长了影子,营造出一种宁静祥和的氛围”。增加对各部分的详细描述,能使生成的视频更遵守提示词,更稳定,提升美感。 3. Claude2 中文精读中的提示词优化: 优化提示类似于进行一系列实验,进行测试、解释结果,然后根据结果调整变量(提示或输入)。 当 Claude 在测试中失败,尝试确定失败原因,调整提示词以解决失败点。 调整提示词的方式包括更明确地编写规则或添加新规则,通过在提示中添加类似示例和规范输出向 Claude 展示如何正确处理示例。 当 Claude 在某一类型输入上表现良好,尝试使用另一种输入类型,确保尝试极端情况。 在提示词中添加规则和示例,直到在具有代表性的输入集合上取得良好表现,建议进行“保留测试”。
2024-12-31
AI 修正中文错字和排版优化
以下是关于 AI 修正中文错字和排版优化的相关内容: 在文章排版方面,若想利用 AI 提效,可参考以下方法: 对于需要加粗的内容,可向 GPT 说明选择,待其输出排版后的文章,点击「复制代码」并粘贴到微信 Markdown 排版器中。 一些流行的 AI 文章排版工具包括: Grammarly:不仅能检查语法和拼写,还提供排版功能,可改进文档风格和流畅性。 QuillBot:能改进文本清晰度和流畅性,同时保持原意。 Latex:虽不是纯粹的 AI 工具,但在学术论文排版中广泛使用,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 使用特定的 AI 排版方法时,如利用 ChatGPT4o 进行 Markdown 排版,需注意:若不熟悉 ChatGPT4o 或 Markdown 语法,或自身有加粗重点句子的习惯,可不采用此方法,应追求高效而非刻意使用 AI。首先打开 GPTs https://chatgpt.com/g/gauDv1yCnbwenzhangmarkdownpaibandashi ,若无法打开可跳过。接着将从迅捷 Markdown 编辑器复制的文章内容发送给 GPTs,GPT 会先分析原文并列出需加粗和引用的句子让您确认。 需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-29
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
能够在现有的PPT基础上优化PPT的AI
以下是一些能够在现有的 PPT 基础上进行优化的 AI 相关信息: 卓sir 分享了使用 GPT4 和 WPS AI 制作和优化 PPT 的经验。他提到与 GPT4 交流体验舒适,通过多次迭代完成电商 PPT 大纲,WPS AI 能丰富大纲内容、快速生成 PPT 并进行主题配色和字体修改。 熊猫 Jay 介绍了 AI 生成 PPT 的主要思路,包括导入大纲到工具生成 PPT 以及优化整体结构,如按照公司要求自行优化字体、图片等元素,删改下载后的 PPT 内容。 市场上好用的 AI PPT 工具包括:Gamma 是在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式;美图 AI PPT 可通过输入简单文本描述生成专业设计,有丰富模板库;Mindshow 是 AI 驱动的 PPT 辅助工具,提供智能设计功能;讯飞智文是科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供多种功能。 相关工具链接: Gamma:https://gamma.app/ 美图 AI PPT:https://www.xdesign.com/ppt/ Mindshow:https://www.mindshow.fun/ 讯飞智文:https://zhiwen.xfyun.cn/
2024-12-27
网站自动生成及seo自动优化工具
以下是一些网站自动生成及 SEO 自动优化工具: 1. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是其 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 常用的 SEO 工具包括:Semrush、Similarweb、Ahrefs、Moz、Google Trends 等。对于新手,谷歌插件 AITDK 能满足基本需求,链接:https://chromewebstore.google.com/detail/aitdkseoextension/hhfkpjffbhledfpkhhcoidplcebgdgbk 。其他免费工具: 1. Broken Link Checker:https://www.brokenlinkcheck.com/ 2. 查找同一域上重复内容:https://www.siteliner.com/ 3. 查找页面副本:https://www.copyscape.com/ 4. 检查是否为 AI 生成内容:https://undetectable.ai/ 5. 本地化网站爬虫检查:https://www.screamingfrog.co.uk/seospider/
2024-12-25