Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

关于LLMs文本与图像混合模态训练

Answer

以下是关于 LLMs 文本与图像混合模态训练的相关内容:

多模态大模型总结:

  1. InstructBLIP 基于预训练的 BLIP-2 模型进行训练,在 MM IT 期间仅更新 Q-Former。通过引入指令感知的视觉特征提取和相应的指令,能够提取灵活多样的特征。
  2. PandaGPT 是一种开创性的通用模型,能够理解 6 种不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。
  3. PaLI-X 使用混合 VL 目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。
  4. Video-LLaMA 引入了多分支跨模式 PT 框架,使 LLMs 能够在与人类对话的同时处理给定视频的视觉和音频内容,使视觉与语言以及音频与语言保持一致。
  5. 视频聊天 GPT 是专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。
  6. Shikra Chen 等人介绍了一种简单且统一的预训练 MM-LLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制,展示了值得称赞的泛化能力,可以有效处理看不见的设置。
  7. DLP 提出 P-Former 来预测理想提示,并在单模态句子数据集上进行训练,展示了单模态训练增强 MM 学习的可行性。

未来发展方向: 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 Unicoder-VL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像-文本任务奠定基础。随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。近期,向多模态 LLMs 的发展趋势是从进行预训练到向指令调整(instruction tuning)转变,例如 LLaVA 和 MiniGPT-4,它们通过融合视觉和语言信息,能够更有效地完成视觉理解相关的任务,进一步提升模型对于指令的理解能力,提升零样本性能,使模型能够更好地泛化到未见过的任务和领域。

训练过程:

  1. 预训练阶段:通常利用 X-Text 的数据集来训练输入、输出的 Projector,通过优化损失函数来实现不同模态的对齐,PEFT 有时候用于 LLM Backbone。X-Text 数据集包含图像-文本、视频-文本和音频-文本,其中图像-文本有两种类型:图像-文本对和交错图像-文本语料库。
  2. 多模态微调:是对满足指令微调格式的一系列数据集对预训练好的多模态大模型进行微调。通过这种微调,MM-LLM 可以遵循新的指令泛化到没有见过的任务,增强 zero-shot 的能力。MM IT 包括监督微调(SFT)和 RLHF 两部分,目的是为了使得模型符合人类的意图或者偏好,并且增强 MMLLMs 的交互能力。SFT 将 PT 阶段的数据转换为指令-aware 的格式,使用 QA 任务作为例子,可采用各种模板。优化目标和预训练相同,SFT 数据可以构造为单轮的 QA 或者多轮的 QA。常用的 SFT 和 RLHF 的数据集见表 4。
Content generated by AI large model, please carefully verify (powered by aily)

References

多模态大模型入门指南-长文慎入【持续更新】

(8)InstructBLIP基于预训练的BLIP-2模型进行训练,在MM IT期间仅更新Q-Former。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。(9)PandaGPT是一种开创性的通用模型,能够理解6不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。(10)PaLI-X使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。(11)Video-LLaMA张引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。(12)视频聊天GPT Maaz等人。(2023)是专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。(13)Shikra Chen等人。(2023d)介绍了一种简单且统一的预训练MM-LLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制。该模型展示了值得称赞的泛化能力,可以有效处理看不见的设置。(14)DLP提出P-Former来预测理想提示,并在单模态句子数据集上进行训练。这展示了单模态训练增强MM学习的可行性。

质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期

最初,多模态融合方法常采用预训练的目标检测器,例如ViLBERT、VisualBERT和Unicoder-VL。这些方法通过提取图像特征和执行交叉模态预训练任务,为后续的图像-文本任务奠定了基础。随着ViT的出现和普及,更多方法开始利用ViT作为图像编码器。这些方法强调大规模预训练,以提高模型的性能和泛化能力,例如Flamingo。近期,我们见证了向多模态LLMs的发展趋势,从进行预训练到向指令调整(instruction tuning)转变。例如LLaVA和MiniGPT-4,它们通过融合视觉和语言信息,能够更有效地完成视觉理解相关的任务。这进一步提升模型对于指令的理解能力,提升零样本性能,使模型能够更好地泛化到未见过的任务和领域,对于实现具有高度智能的通用人工智能,是一个重要的进步。

多模态大模型入门指南-长文慎入【持续更新】

在预训练阶段,通常利用X-Text的数据集,来训练输入,输出的Projector。通过优化损失函数来实现不同模态的对齐。PEFT有时候用于LLM Backbone。X-文本数据集包含图像-文本、视频-文本和音频-文本,其中图像-文本有两种类型:图像-文本对(即<img1><txt1>)和交错图像-文本语料库(即,txt1><img1><txt2><txt3><img2><txt4>)。这些X-Text数据集的详细统计数据如附录F的表3所示。[heading3]3.2多模态微调:[content]多模态微调是对满足指令微调格式的一系列数据集对预训练好的多模态大模型进行微调。通过这种微调,MM-LLM是可以遵循新的指令泛化到没有见过的任务,增强zero-shot的能力。这个简单而有影响力的概念促进了NLP领域后续努力的成功,例如,InstructGPT、OPT-IML、InstructBLIP。MM IT包括监督微调(SFT)和RLHF两部分,目的是为了使得模型符合人类的意图或者偏好,并且增强MMLLMs的交互能力。SFT将PT阶段的额数据转换为指令-aware的格式,使用QA任务作为例子。可以采用各种模板,例如:(1)<Image>{Question}A short answer to the question is;(2)<Image>Examine the image and respond to the following question with a brief answer:{Question}.Answer:优化目标和预训练是相同的,SFT数据可以构造为单论的QA或者多伦的QA。常用的SFT和RLHF的数据集见表4。

Others are asking
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
如何构建多模态知识库?
构建多模态知识库可以参考以下步骤: 1. 图像知识库方面:通过多模态的能力对图片信息进行检索理解。效果测试时,上传一张图片,在图像数据库里找到相关信息,然后结合内容进行回复。 2. 构建图片索引: 新建结构化数据表时,将图片索引所在列的字段类型设置为 link。需注意新建数据表后,无法再新增或修改字段类型为 link。 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。创建知识库后,无法再新建或修改图片索引。 3. 多模态知识库还包括构建图片型索引需结构化数据表,字段类型设置为 link,以实现 FAQ 中向用户推送图片信息。
2025-03-19
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
【深度拆解】ChatGPT-4o背后的技术革新:从语言模型到多模态跨越
ChatGPT4o 背后的技术革新具有重要意义。人类的感知多样,仅靠语言描述世界远远不够,多模态理解非常有用,能更全面学习世界、理解人类需求等。2023 年 9 月 GPT4v 发布,将大语言模型竞赛带入多模态模型时代,如 ChatGPT 能看图说话、画图,Google 的 Gemini 支持多种模态,但 OpenAI 常抢先发布。今年 5 月 OpenAI 发布 GPT4o,向智能体方向迈进,其是之前技术的集大成者,通过端到端神经网络混合训练视觉、语音和文本数据,平均音频输入反应时间为 300 毫秒,能感悟人类表达的情绪等。OpenAI 未公开 GPT4o 技术细节,唯一线索来自内部炼丹师的博客 AudioLM。此外,GPT4 是 OpenAI 的多模态工具,在编程任务中表现出色,ChatGPT 是用户友好界面,可与高级语言模型交互。2024 年 5 月 14 日 OpenAI 发布 GPT4o,效率高、价格降低、延迟缩短。9 月 16 日 OpenAI 推出 o1 系列模型,在复杂任务中表现优异,o1mini 适合编码任务,两个模型已在 ChatGPT 中提供,有免费或收费版本。
2025-03-09
多模态是什么
多模态是指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。 随着生成式 AI 和大模型的发展,我们逐渐进入多模态灵活转换的新时代,即利用 AI 实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换,这一变革依靠一系列革新性的算法。 在感知不同模态数据时,AI 不再局限于传统的单一模态处理方式,而是借助高维向量空间来理解数据,将图像或文字“压缩”成能够捕捉深层关系的抽象向量。 Gemini 模型本身就是多模态的,展示了无缝结合跨模态的能力,在识别输入细节、聚合上下文以及在不同模态上应用等方面表现出强大性能。
2025-03-02
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31
想要一个输入文本生成ppt的免费工具
以下为您介绍一些输入文本生成 PPT 的免费工具: 1. 闪击: 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 特点:国内网站,不需要魔法。 操作流程: 选择模版。 输入大纲和要点(由于闪击的语法和准备的大纲内容可能有一些偏差,可以参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650)。 点击文本转 PPT,并在提示框中选择确定。 注意事项:导出有一些限制,PPT 需要会员才能导出。 2. 歌者 PPT: 网址:gezhe.com 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具。用户可以轻松将任何主题或资料转化为 PPT,并选择应用大量精美的模板。无论是商务演示、教育培训、学术报告还是专业领域,都能提供便捷的操作和智能化体验,让幻灯片制作变得更加轻松高效。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对于经常需要制作演示文稿的学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将各种资料转换成精美的 PPT,高效又准确。 模板和案例库丰富,适合各种场景,几乎无需学习成本就能上手使用。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》(质朴发言) 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-30
文本转化成ppt的AI工具,上传自己的模版
以下为一些可将文本转化成 PPT 且能上传自己模版的 AI 工具及使用指南: 1. 闪击 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版 输入大纲和要点:由于闪击的语法和准备的大纲内容可能有偏差,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,并在提示框中选择确定。 在线编辑 导出:导出有一些限制,PPT 需要会员才能导出。 2. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。以导入方式新建思维导图。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。 3. 其他 AI PPT 工具: Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供一系列的智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2025-03-30
文本转化成ppt的AI工具,用指定的模版
以下为您介绍几种文本转化成 PPT 的 AI 工具及使用方法: 闪击 网址:国内网站,不需要魔法。地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版 输入大纲和要点:由于闪击的语法和准备的大纲内容有一些偏差,可以参考下官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将之前准备的大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,并在提示框中选择确定。 在线编辑 导出:导出有一些限制,PPT 需要会员才能导出。 Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 1. 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 2. 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 3. Process ON 导入 Xmind 文件。以导入方式新建思维导图。选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 歌者 PPT 功能: 话题生成:一键生成 PPT 内容 资料转换:支持多种文件格式转 PPT 多语言支持:生成多语言 PPT 模板和案例:海量模板和案例库 在线编辑和分享:生成结果可自由编辑并在线分享 增值服务:自定义模板、字体、动效等 简介:歌者 PPT(gezhe.com)是一款永久免费的智能 PPT 生成工具。用户可以轻松将任何主题或资料转化为 PPT,并选择应用大量精美的模板。无论是商务演示、教育培训、学术报告还是专业领域,歌者 PPT 都能提供便捷的操作和智能化体验,让幻灯片制作变得更加轻松高效。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 首先,歌者 PPT 完全免费,这对于经常需要制作演示文稿的学生和职场人士来说,简直是福音。 其次,它的智能化程度令人印象深刻。通过 AI 技术,歌者 PPT 可以快速将各种资料转换成精美的 PPT,整个过程既高效又准确。 歌者 PPT 的模板和案例库非常丰富,无论是职场办公还是学术演讲,你总能找到适合的模版或案例。歌者 PPT 对多语言的支持使得它在国际化环境中也非常实用,可以一键生成目标语言的 PPT,也可以把写好的 PPT 翻译成其他语言。这款工具特别适合那些不太擅长制作 PPT 或者时间紧张的人群,几乎无需学习成本就能上手使用。
2025-03-30
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28
gpt4o图像生成
GPT4o 是 OpenAI 推出的具有强大图像生成能力的多模态模型,能够实现精确、准确、照片级真实感输出。其核心功能包括生成美观且实用的图像,如白板演示、科学实验图解等。亮点功能有精确的文本渲染,能在图像中准确生成文字,如街道标志、菜单、邀请函等;支持多样化场景生成,从照片级真实感到漫画风格均可;具有上下文感知能力,能利用内在知识库和对话上下文生成符合语境的内容。技术上通过联合训练在线图像和文本的分布,学会了图像与语言及图像之间的关系,经过后期训练优化,在视觉流畅性和一致性方面表现出色。实际应用场景包括信息传递、创意设计、教育与演示等。但也存在某些场景或细节的限制。安全性方面,OpenAI 强调了保护。目前该功能已集成到 ChatGPT 中,用户可直接体验。 此外,在 3 月 26 日的 AI 资讯汇总中,OpenAI 推出了 GPT4o 图像生成能力。昨晚 Open AI 更新 GPT4o 图像生成功能后,其真正强大之处在于几乎可以通过自然语言对话完成复杂的 SD 图像生成工作流的所有玩法,如重新打光、扩图、换脸、融脸、风格化、风格迁移、换装、换发型等。
2025-03-28
免费增强图像分辨率的
以下是一些免费增强图像分辨率的工具和方法: 1. Kraken.io:主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 2. Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 3. Waifu2x:提供图片放大和降噪功能,使用深度学习技术提高图像质量,保留细节和纹理,简单易用效果好。 4. Bigjpg:强大的图像分辨率增强工具,使用神经网络算法加大图像尺寸,提高图像质量,处理速度快。 此外,还有以下相关资源: 1. 【超级会员 V6】通过百度网盘分享的 Topaz 全家桶,链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」。 2. RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次后要收费。 3. InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。地址、在线试用地址:https://github.com/zsyOAOA/InvSR?tab=readme ov filerailway_car online demo 、https://huggingface.co/spaces/OAOA/InvSR 。 4. GIGAGAN:https://mingukkang.github.io/GigaGAN/ 。 5. Topaz Gigapixel AI:https://www.topazlabs.com/gigapixel ai 。 6. Topaz Photo AI:https://www.topazlabs.com/ 。 7. discord:https://discord.gg/m5wPDgkaWP 。
2025-03-24
图像生成
图像生成是 AIGC 的一个重要领域,离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。 图像生成可用于多种场景,如数据增强以提高机器学习模型的性能,也可用于创造艺术、生成产品图像(如艺术作品、虚拟现实场景或图像修复等)。 一些具有代表性的海外项目包括: Stable Diffusion:文本生成图像模型,主要由 VAE、UNet 网络和 CLIP 文本编码器组成。首先使用 CLIP 模型将文本转换为表征形式,然后引导扩散模型 UNet 在低维表征上进行扩散,之后将扩散之后的低维表征送入 VAE 中的解码器,从而实现图像生成。 DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。 在图像生成的用法方面,图像生成端点允许您在给定文本提示的情况下创建原始图像。生成的图像的大小可以为 256x256、512x512 或 1024x1024 像素。较小的尺寸生成速度更快。您可以使用 n 参数一次请求 1 10 张图像。描述越详细,就越有可能获得您或您的最终用户想要的结果。您可以探索 DALL·E 预览应用程序中的示例以获得更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。 AI 绘图 Imagen 3 具有以下功能点和优势: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。
2025-03-23
在ai图像训练打标时,怎么让部分标签权重更大
在 AI 图像训练打标时,让部分标签权重更大的方法如下: 1. 在 Stable Diffusion 中,手动补充的特殊 tag 放在第一位,因为 tags 标签有顺序,最开始的 tag 权重最大,越靠后的 tag 权重越小。 2. 在 BooruDatasetTagManager 中采用方法二: 删除部分特征标签,如 All tags 中不该出现的错误识别的自动标签,Image tags 中作为特定角色的自带特征的标签,并将特征与 LoRA 做绑定。 完成所有优化删除后,点击左上角菜单 File>Save all changes 保存当前的设置。 此外,在 Stable Diffusion 训练数据集制作中还需注意: 1. 调用 Waifu Diffusion v1.4 模型需要安装特定版本(2.10.0)的 Tensorflow 库,在命令行输入相应命令完成版本检查与安装适配。 2. 进入到 SDTrain/finetune/路径下,运行相应代码获得 tag 自动标注,其中主要参数包括: batch_size:每次传入 Waifu Diffusion v1.4 模型进行前向处理的数据数量。 model_dir:加载的本地 Waifu Diffusion v1.4 模型路径。 remove_underscore:开启后将输出 tag 关键词中的下划线替换为空格。 general_threshold:设置常规 tag 关键词的筛选置信度。 character_threshold:设置特定人物特征 tag 关键词的筛选置信度。 caption_extension:设置 tag 关键词标签的扩展名。 max_data_loader_n_workers:设置大于等于 2,加速数据处理。
2025-03-15
推荐几个可以对已有图像编辑的AI网站
以下是为您推荐的可以对已有图像进行编辑的 AI 网站: 1. pixelcut.ai:提供图像编辑功能,网址为。 2. Befunky:属于图像编辑类网站,网址是。 3. SnapEditAllinone AI Photo Editor:可进行图像编辑,网址为。 4. Remini:图像编辑网站,尤其在提升分辨率方面有特色,网址是。 5. Erase.bg:图像编辑网站,可用于去水印背景,网址为。 6. Palette.fm:图像编辑网站,在提升分辨率方面表现出色,网址是。 7. AI 抠图 pixian.ai:图像编辑网站,网址为。 8. 。 9. 美图设计室:图像编辑网站,网址为。 10. Facetune:图像编辑网站,网址为。 此外,还有以下在图像编辑方面表现较好的网站: 1. Remove.bg:图像编辑网站,4 月访问量为 5870 万次,网址未知。 2. Fotor:图像编辑网站,4 月访问量为 1477 万次,网址未知。 3. Photoroom:图像编辑网站,4 月访问量为 1260 万次,网址未知。 4. Pixlr:图像编辑网站,4 月访问量为 1210 万次,网址未知。 5. PicWish:图像编辑网站,4 月访问量为 713 万次,网址未知。 6. QuickTools by Picsart:图像编辑网站,4 月访问量为 417 万次,网址未知。 7. WatermarkRemover.io:图像编辑网站,4 月访问量为 399 万次,网址未知。 8. Clipdrop:图像编辑网站,4 月访问量为 335 万次,网址未知。 9. Cleanup.pictures:图像编辑网站,4 月访问量为 192 万次,网址未知。 10. Magic Studio:图像编辑网站,4 月访问量为 127 万次,网址未知。 11. Luminar Neo:图像编辑网站,4 月访问量为 126 万次,网址未知。 12. magnific.ai:图像编辑网站,4 月访问量为 111 万次,网址未知。 13. PhotoAiD:图像编辑网站,4 月访问量为 106 万次,网址未知。
2025-03-13