不同国家对人工智能的态度和相关情况如下:
explainability.AI systems should display levels of explainability that areappropriate to their context,including the level of risk and consideration ofwhat is achievable given the state of the art.Principle FairnessDefinitionandexplanationAI systems should not undermine the legal rights of individuals ororganisations,discriminate unfairly against individuals or create unfair marketoutcomes.Actors involved in all stages of the AI life cycle should considerdefinitions of fairness that are appropriate to a system’s use,outcomes andthe application of relevant law.Fairness is a concept embedded across many areas of law and regulation,including equality and human rights,data protection,consumer andcompetition law,public and common law,and rules protecting vulnerablepeople.Regulators may need to develop and publish descriptions and illustrations offairness that apply to AI systems within their regulatory domain,and developguidance that takes into account relevant law,regulation,technicalstandards,99and assurance techniques.Regulators will need to ensure that AI systems in their domain are designed,deployed and used considering such descriptions of fairness.WhereBritainThinks:Complete transparency,complete simplicity,CDEI and CDDO,2021.Trust in Artificial Intelligence:a five country study,KPMG and the University of Queensland,2021; Evidence to support theanalysis of impacts for AI governance,Frontier Economics,2023.Should AI models be explainable?That depends,Stanford Institute for Human-Centered Artificial Intelligence,2021.For example,ISO/IEC TR 24027:2021 describes measurement techniques and methods for assessing bias in AI systemsacross their life cycle,especially in AI-aided decision-making.A pro-innovation approach to AI regulationconcepts of fairness are relevant in a broad range of intersecting regulatory
《欧盟人工智能法案》获得批准,正式生效随着该法案的通过,**欧洲成为世界上第一个全面采用人工智能监管框架的地区。**执行将分阶段进行,对“不可接受的风险”(例如欺骗、社会评分)的禁令将于2025年2月生效。美国大型实验室努力应对欧洲监管欧盟人工智能法案和长期以来的《通用数据保护条例》(GDPR)对隐私和数据传输的要求相结合,使美国实验室难以适应其服务。Anthropic的Claude在2024年5月之前才向欧洲用户开放使用,而Meta不会为欧洲客户提供多模态模型。与此同时,苹果公司正在反对欧盟的数字市场法案,声称其互操作性要求与它在隐私和安全方面的立场不兼容。因此,苹果公司推迟了在欧洲推出Apple Intelligence。中国人工智能监管进入执行时代我国是第一个开始制定生成式人工智能监管框架的国家,从2022年开始陆续出台全面指南,如今审查机构现在正在介入。我国持续生产SOTA模型,由国家互联网信息办公室监督。政府希望模型同时避免给政治问题提供“错误”的答案,在发布模型之前,必须提交其模型进行测试,以校准拒绝率。虽然禁止Hugging Face等国外网站访问,但官方批准的“主流价值观语料库”可以作为训练数据源。美国对中国实施更严格的出口管制和投资限制美国商务部发出了信函,要求美国制造商停止向我国半导体制造商进行最先进设施的销售。不仅如此,美国正在采取措施阻止或限制(包括半导体、国防、监控和音频、图像和视频识别)的中国初创企业的投资。美国不仅禁止了某些物品的出口,还在限制期限前向国际合作伙伴施压。这影响到了NVIDIA、Intel和ASML。
接下来,我们想了解对人工智能的兴趣从何而来。美国稳居第一。在研究的12个月里,美国人工智能行业的访问量达到了55亿次,占总流量的22.62%。尽管美国的人口少于中国和印度,但这并不令人意外,因为美国拥有[价值超过1.8万亿美元的全球领先科技市场。](https://www.zippia.com/advice/tech-industry-statistics/#:~:text=Most%20of%20this%20money%20is,approximate%20worth%20of%20%241.8%20trillion.)印度紧随美国之后,访问量达到21亿人次,占总流量的8.52%。同样,印度也以其令人印象深刻的科技市场而闻名,被称为[全球最大的IT和BPO服务出口国](https://www.ey.com/en_in/india-at-100/how-india-is-emerging-as-the-world-s-technology-and-services-hub#:~:text=India%20has%20demonstrated%20its%20strength,which%20employ%205%20million%20people.)之一,因此对该国的兴趣比其他国家大得多也就不足为奇了,特别是因为印度的1.4十亿人口。其次是印度,其次是印度尼西亚、菲律宾和巴西。这三个国家的兴趣水平极其相似,去年产生了1.3至14亿人次的访问量。排在印度、印度尼西亚和菲律宾之后的是对人工智能兴趣领先的亚洲国家,这可以通过它们庞大的人口和令人兴奋的科技初创场景来解释。巴西在南美洲处于领先地位。它产生的流量几乎是排在第二位的英国、日本和德国的两倍。有趣的是,尽管中国拥有14亿人口,但并未跻身前20名。