直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

问我一个关于AIGC的问题。

回答

以下是一些关于 AIGC 的问题供您参考:

  1. AIGC 在内容创作领域的优势和局限性分别是什么?
  2. AIGC 如何影响传统的内容创作行业?
  3. 目前 AIGC 在图像生成方面有哪些最新的技术突破?
  4. 如何评估 AIGC 生成内容的质量和准确性?
  5. AIGC 在视频生成领域的应用前景如何?
  6. 与 UGC 和 PGC 相比,AIGC 在内容多样性方面表现如何?
  7. 哪些行业最有可能率先广泛应用 AIGC 技术?
  8. Gen AI/Generative AI 与 AIGC 在技术实现上有哪些关键差异?
  9. ChatGPT 作为一种服务,与其他类似的聊天应用有何不同?
  10. 未来 AIGC 工具在产品原型设计方面可能会有哪些创新?
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

十七问解读生成式人工智能

"大家好!这篇文章收集了社区小伙伴们向我提出的日常问题以及我的一些答复,算是一个全面的汇总。鉴于文章的科普性质和广泛的受众,我将通过问答的形式,尽量使用浅显易懂的语言来介绍一些基本概念,希望大家能有所收获。"[heading1]问题一、AIGC是什么?[content]AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

问:有产品原型设计的AIGC工具吗

目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,这些工具可以帮助设计师和产品经理快速创建和迭代产品设计的原型。以下是一些流行的AIGC工具,它们可以用于产品原型设计:1.UIzard:UIzard是一个利用AI技术生成用户界面的工具,它可以根据设计师提供的信息快速生成UI设计2.Figma:Figma是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma的社区也开发了一些AI插件,用于增强设计流程。3.Sketch:Sketch是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用AI技术来辅助设计工作,例如自动生成设计元素等。这些工具中的AI功能通常包括自动生成设计元素、提供设计建议、优化用户界面布局等,以减少设计师的重复劳动,并提高设计效率。随着AI技术的不断发展,未来可能会有更多专门针对产品原型设计的AIGC工具出现。

十七问解读生成式人工智能

Gen AI/Generative AI是“生成式人工智能”正式称呼。Generative AI是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而AIGC指的是由人工智能生成的内容的创作方式,实际上是Generative AI的应用结果。[heading1]问题四、ChatGPT是什么?[content]从OpenAI的官网中可以查询到,在2022年宣发时,OpenAI称ChatGPT是一种模型。但是同样是在官网中查询帮助页面,发现这里称ChatGPT是一种服务。而我们使用的ChatGPT目前是依赖GPT系列模型来运转的。不做任何怀疑论上的揣摩,从公开收集的资料中可以看出,早些年OpenAI推出了一个叫ChatGPT的模型,但目前我们所熟知的ChatGPT逐渐演变成了一种可以兼容多种GPT模型的聊天应用(服务)。

其他人在问
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
适合游戏设计的aigc平台
以下是一些适合游戏设计的 AIGC 平台及相关案例: 1. 上海人工智能实验室旗下的 OpenInnoLab平台:北京市新英才学校的“AI 创作家”课程中,学生使用该平台的文生图 AI 工具生成桌游卡牌背后的图案。 2. 在“DragonX”宠物龙养成游戏中,Demo 的原则为 AIGC 的最大化,玩法内容基本都使用 AIGC 来生产游戏内容,包括世界观、核心循环、核心玩法等方面。 3. 关于游戏设计与 AIGC 的相关讨论:“质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期”涵盖了游戏与生成式 AI 的发展趋势、游戏+AI 制作的讨论、资本市场对 AI+游戏的看法、AI 对游戏领域带来的变革以及新 AI 游戏面临的问题等多方面内容。
2024-12-18
通往AIGC之路
以下是为您整合的关于“通往 AGI 之路”的相关内容: “通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。 【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。扫码添加菩萨老师助理,了解更多信息。 通用人工智能(AGI),也叫强人工智能,通常这玩意出现时也就是奇点科技大爆炸的那一刻,科技推动文明呈指数级增长。也许在 5 年后,也许在 2035 年,也许在 2050 年。通往通用人工智能的路也许还长,但它已如海那边吹过来的风,还没有看到大海,就已闻到潮湿腥咸的味道。 在 OPEN AI 发布 gpt3.5 引爆 AIGC 潮流不久,“通往 AGI 之路”由几个对 AIGC 感兴趣的人发起组建。其中有个设计师为其作了一套品牌 VI,设计师三思用 Midjourney 生成了小鹿吉祥物三视图。彭青云在看到相关内容后,希望为其做小鹿 IP 的延展,并获得了相关权限。
2024-12-16
怎样学习AIGC
以下是关于学习 AIGC 的相关内容: AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧,简称 AI。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容,简称 GenAI。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 最近感悟: 半个月没更新文章,对 AIGC 做了更系统、深入的学习和调研。 参加了 3 场 AI 线下活动,在 AI 社群中浪迹一个多月,感到兴奋和热血,认为 AIGC 在 2024 年的发展类似 2014 年移动互联网时代大量新兴 APP 的涌现。 感悟包括:AI 领域新名词、新概念等丰富多彩;AI 知识付费领域“鱼龙混杂”;AI 发展迅速,学习 AI 知识很重要。 AIGC 学习三步法: 具体内容未给出,如需了解,请补充更多信息。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图片。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址未给出。
2024-12-14
aigc的当前生态
AIGC 的当前生态主要包括以下方面: 1. 概述:GenAI(生成式 AI)能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。作为强大的技术,能赋能诸多领域,但存在合规风险,我国对 AIGC 的监管框架由多部法律和规定构成。 2. 分类:AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用多种模型,如 GPT4 和 GeminiUltra;图像生成依赖多种技术,代表项目有 Stable Diffusion 和 StyleGAN 2;音视频生成利用多种模型,代表项目有 Sora 和 WaveNet。 3. 应用领域:AIGC 可应用于音乐生成、游戏开发、医疗保健等领域,在游戏开发和制作的整个生命周期的多个阶段都有应用,例如用文本生成平面图像,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可将文本描述生成高质量二维图像。 4. 产品原型设计工具:目前有 UIzard、Figma、Sketch 等基于 AIGC 的工具可用于产品原型设计,其 AI 功能包括自动生成设计元素、提供设计建议、优化用户界面布局等。随着技术发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-12-13
AIGC产品经理学习路径
以下是为您提供的 AIGC 产品经理学习路径: 1. 技术方面:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术背景,熟悉使用如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等工具。 2. 产品经验:拥有产品开发与管理经验,尤其是在互联网和 AI 产品开发方面,具备项目管理与执行能力。 3. 应用场景:广泛涉足 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等多元化应用场景。 4. 学习提升:处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中。 5. 课程学习:可以选择如【野菩萨的 AIGC 资深课】这样的课程,课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。 希望以上内容对您有所帮助。
2024-12-12
你可以根据问题说生成PPT或者图片吗
以下是关于生成 PPT 或图片的相关内容: 增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成,包括图片、PPT、PDF 等。例如,在对话框输入诉求“生成常见的系统架构风格架构设计图”即可生成相应图片,输入“帮我生成一篇包含以上架构风格的完整 PPT”可生成 PPT 幻灯片内容及相关模板选择,输入“根据上面的架构风格,制作一篇常见系统架构风格的 PDF 文件”可生成相应的可选模板。 在 MJ 应用中,为 PPT 配图可通过复制图像链接和提示词,在 discord 中输入相应命令生成图像。生成后可改变比例和镜头拉远,检查构图,选择合适的图放入 PPT 调整构图。 在制作课程时,可通过一系列提问模板让 ChatGPT 协助创作章节内容,并将其转换成 PPT 格式,还可加入学员案例、参考范例让其进行改写或续写。
2024-12-19
我是一个法律工作者,需要经常回答客户的一些法律问题,哪个AI适合我这种场景的工作需求
对于您这种经常回答客户法律问题的法律工作者,以下几种场景中适合使用法律行业垂类的 AI 产品: 1. 法规研究与解读:使用 Prompt 指令词,如“根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议”,AI 助手将依据最新条款解析原则并提出操作指南或合规建议。 2. 法律意见书撰写或非诉交易文件材料:例如“针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性”,AI 将根据提供的材料撰写法律意见书。 3. 案例检索:如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”,AI 系统将检索并提炼关键判决理由和结果。 4. 类案检索:同样最好使用法律行业垂类的 AI 产品。 5. 法律文本阅读:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 在使用 Prompt 时,要注意结构提示,如“【需求或目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】”。
2024-12-19
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
最近gpt怎么不会正常回答问题了,出现了降智现象
GPT 有时不能正常回答问题可能有以下原因: 1. 对于一些复杂的数学问题,与 ChatGPT 相比,GPT4 虽然表现更好,但仍可能存在超出其能力范围的情况。ChatGPT 在回答问题时,常见的问题包括依赖“模板匹配”导致回答不连贯或无意义,无法抓住问题要点或数学步骤逻辑,在实现或计算方面犯错,以及倾向于无目的的代数操作或计算从而导致混乱或错误。 2. 新手在使用时可能忽略基础知识的重要性,比如在还未充分掌握基础教程的情况下就急于上手写复杂的提示词,导致后续出现一些基础问题,如模型失忆、内容混淆、无法指定准确字数等。 3. 新手期容易陷入试图用一个 Prompt 解决多个问题的误区,导致 Prompt 过长、结构复杂、逻辑不清晰,从而影响整体性能和稳定性,使生成的内容多为正确的废话或忽略初始设置的限制性语句等。 4. GPT 回答问题的方式可能较为古板,缺乏趣味性和感情色彩。通过让其扮演特定角色、给出明确输出要求,尤其是加入感情色彩和动作描述等方式,可以改善回复的灵性和人味儿。
2024-12-10
你好,我目前正在做oj系统,我想在项目中接入ai助手,来帮助用户分析问题,和输出正确代码
您好,在将 AI 助手接入您的 OJ 系统以帮助用户分析问题和输出正确代码方面,这是一个很有前景的想法。首先,您需要明确您希望 AI 助手具备的具体功能和性能要求,例如能够处理的编程语言种类、问题分析的深度和准确性等。 接下来,您可以考虑选择适合的 AI 技术和框架。目前常见的有自然语言处理(NLP)技术,用于理解用户的问题描述;机器学习算法,用于预测和生成代码。 在数据准备方面,您需要收集大量的编程相关数据,包括问题描述、正确的代码示例等,以训练您的 AI 模型。 同时,要注意确保 AI 助手的输出符合编程规范和最佳实践,并且能够与您的 OJ 系统进行有效的集成和交互。 您还需要考虑如何对 AI 助手的性能进行评估和优化,以不断提升其服务质量。 希望以上建议对您有所帮助,如果您能提供更多关于您的 OJ 系统和需求的详细信息,我可以为您提供更具针对性的指导。
2024-12-05
向量检索在大语言模型中的应用主要是为了解决什么问题
向量检索在大语言模型中的应用主要是为了解决以下问题: 1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。 2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。 3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。 4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
2024-12-05
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
我想要美化一个表格,什么AI工具可以帮我?
以下是一些可以帮助您美化表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,能通过聊天形式完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 此外,如果您是在软件架构设计中需要绘制逻辑视图、功能视图、部署视图,以下工具可供选择: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,允许创建多种类型图表,包括逻辑和部署视图。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 内容由 AI 大模型生成,请仔细甄别。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19