Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

openai的assistant怎么用呀

Answer

OpenAI 的 Assistant 通常可以通过以下方式使用:

  1. 对于 GPT 系列模型,如 GPTs,其使用方式很大程度上是基于 OpenAI 的 Assistant API 加上一个简单的前端。例如,在实现语音对话时,会更换 prompt 以让 GPT 尽量生成短的内容,避免轻易生成列表和代码,语音合成使用 TTS API,识别使用 whisper API(可能有针对上下文的优化)。
  2. 但需要注意的是,使用 OpenAI 的 Assistant 时,其可能存在一些限制,比如大模型的训练数据有日期限制,无法像传统方式那样使用 Google 获取最新的外部信息;没有对整个任务进行详细规划;由于上下文限制,无法一次性完成大规模的任务,可能会出现前后不一致的情况。

总体而言,OpenAI 的 Assistant 的使用方式相对直接,但也需要根据具体需求和场景进行合理运用,并注意其可能存在的局限性。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

在了解AI Agent之前,我们先考虑一个场景:我们要写一本20万字的关于人工智能最新技术的书在没有大模型之前,我们一般会按照如下流程第一步:先使用搜索引擎搜索一些相关书籍和信息进行阅读,为我们打开思路第二步:形成本书的大纲,并且考虑清楚每一章节要编写的内容第三步:针对每一个章节进行内容的编写,在编写过程中可能会调整文章的大纲第四步:在编写后面章节的时候可能会忘记前面写的内容,需要去翻阅前面已经写的内容第五步:文章初步完成之后,我们可能会找相关专业人士帮忙修改最后:经过几番调整之后,书籍最终成型在大模型出现之后,我们可能会这样使用:请你帮忙生成一篇20万字的关于人工智能最新技术的书这个时候我们会发现AI写出来的书根本就无法阅读,是大模型的能力不行么?不仅仅因为这个,相比于第一种写书的方式,第二种方式明显缺少了几个环节没有办法使用Google获取最新的外部信息(大模型的训练数据是有日期限制的)没有对整个事情进行规划(比如先写大纲,再编写每个章节,然后和别人讨论,最后成文)大模型没有记忆的能力,由于上下文(脑容量)的限制,无法一次性完成20万字的文章,会造成前言不搭后语的现象而AI Agent就是为了解决这个问题。AI Agent是应用了大模型(LLM)能力的Agent。以GPT为代表的大模型的出现,将Agent的能力提高到了前所未有的高度。AI Agent又被称为智能体。OpenAI的Lilian Weng将以LLM为驱动的AI Agent,形式化为如下的公式:

GPT、DALL·E、Sora,为什么 OpenAI 可以跑通所有 AGI 技术栈?

GPTs怎么做的?其实很大程度就是OpenAI的Assistant API加个简单得有点简陋的前端。(PS:现在有了OpenAI Assistant API后,你发现加个UI就可以很轻松的复刻OpenAI上线的大部分功能。)那么语音对话呢?你会发现就是换了一个prompt,告诉GPT尽量生成短的内容,不要轻易生成列表和代码。语音合成用TTS API,识别用whisper API(可能有针对上下文的优化),结束。这些选择看上去非常暴力,而且会给OpenAI增加开销(长的prompt会明显增大开销),但是OpenAI仍然选择这么做,因为这让OpenAI将大部分精力都花在模型本身的研发上,同时这也是OpenAI的方法论的极致体现,我们下面会提到。这种方法论让OpenAI追求一个大的通用的模型,避免一切定制和特化,就像最近Sam说的一样,希望GPT-5的出现能让模型微调失去意义;这样OpenAI就变成了完完全全的SaaS服务。

OpenAI联创:RLHF是超级智能的秘密武器

我希望未来的模型可以更符合人们心中一个助理或者同事的形象,可以和它们分享日常工作,而不是仅仅提出一个问题就完了。这个助手还可以跟进我们的长期项目,对相关的每个细节了如指掌,甚至能主动提建议。我们没准还可以让它帮忙提醒关键时间节点,跟进进展。现在的模型还普遍缺乏主动性,我希望以后的模型能够从现在单纯的一次性问答,类似搜索引擎的用法,转变为能和模型一起合作完成整个项目。在这种合作中,模型能够了解我们负责的所有事物,主动提出建议,或者在后台运行。Dwarkesh Pa tel:你觉得你的工作什么时候会被取代?John Schulman:取代我的工作吗?可能五年吧。

Others are asking
AI 提示词对是做什么的,user 和 assistant 代表什么?
AI 提示词是用于向语言模型传递指令、问题或其他详细信息,以指导模型生成更好的结果。其质量与提供的信息数量和完善度有关。 在使用 OpenAI 的 gpt4 或者 gpt3.5turbo 等聊天模型时,可以使用三个不同的角色来构建 prompt:system、user 和 assistant。其中,system 不是必需的,但有助于设定 assistant 的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。user 代表用户传递给模型的消息,而 assistant 的消息则是模型给出的响应。 提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。例如,可以通过改进提示词来获得更符合需求的输出结果。语言模型能够基于给出的上下文内容进行续写,但输出结果可能出人意料,通过优化提示词可改善。 此外,从提示词的视角看大模型的输出,可分为系统提示词、用户提示和助手提示词三段,这三段内容是连续的。攻击者可能通过操纵模型输出获取系统提示词,而系统提示词包含应用的原信息、功能设定、产品设定以及 AI 应用的逻辑等。
2024-12-11
openai发展史
OpenAI 的发展历程如下: 2015 年成立,一直将 AGI 作为战略目标之一。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级,分别为: 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AI 的起源最早可追溯到上世纪: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开著名的达特茅斯会议,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科确立下来。此后接近 70 年,AI 的发展起起落落。 Sam Altman 于 2025 年 1 月 6 日发表反思,回首创业历程,包括经历解雇等事件,也提到 2025 年首批 AI Agent 将融入劳动力市场,ChatGPT 两周岁时已迈入能进行复杂推理的全新模型时代,强调随着 AGI 临近,要回顾公司发展历程,继续探索。
2025-01-26
openai 的产品分析
OpenAI 的产品具有以下特点和发展情况: 去年 11 月发布了基于 GPT3.5 最新版本的消费级产品 ChatGPT,其具有强大的功能,能提供各种回答和完成多种任务,但也存在捏造事实的问题。ChatGPT 被视为 GPT4 的台标。 OpenAI 内部对于是否发布功能强大的工具存在争论,发布被视为让公众适应 AI 改变日常生活现实的战略一部分。 OpenAI 目前严重受限于 GPU,这影响了其多项计划,包括 API 的可靠性和速度、更长上下文窗口的推广、微调 API 以及专用容量的提供。 Sam Altman 分享了 OpenAI 近期路线,如 2023 年的首要任务是更便宜、更快的 GPT4,以及实现更长的上下文窗口、扩展微调 API 和推出有状态的 API。 2024 年 10 月有相关的视频和文章对 OpenAI 进行分析和介绍新产品,如剖析其从理想主义走向商业化的历程,以及介绍了四款创新 AI 产品。
2025-01-11
openai中学生写作的建议
以下是 OpenAI 针对中学生写作的一些建议: 1. 写作过程分为五个阶段:前期调研、框架构建、论证深化、反馈改进和调整格式。 2. 包含 12 条具体建议,如快速了解主题、创建反向大纲、寻求反馈和规范引用等技巧。 3. 强调将 AI 作为思维的催化剂,而非替代品。 4. 获得更好结果的六种策略: 写清楚说明:包括在问题中包含细节以获取更相关的答案、要求模型采用一个角色、使用分隔符清晰地表示输入的不同部分、指定完成任务所需的步骤、提供示例、指定期望的输出长度。 提供参考文本:指示模型使用参考文本回答、指示模型使用参考文本中的引用来回答。 将复杂任务拆分成更简单的子任务。 给 GPT 时间「思考」。 使用外部工具。 系统地测试更改。
2025-01-10
OpenAI过去12天的发布会总结
以下是 OpenAI 过去 12 天发布会的总结: 自媒体记录方面: 夕小瑶科技说:o3 发布,可能影响码农工作。 孔某人的低维认知:OpenAI 圣诞 12 天总评,感谢大佬赏饭。 MAX 01Founder:一文详解 o3,虽接近 AGI 但使用成本高。 南瓜博士:使用 o3 钱包和脑子可能不够。 数字生命卡兹克:OpenAI 正式发布 o3,通往 AGI 路上已无障碍。 具体发布内容: Day12:o3 与 o3 mini 正式亮相。 Day11:ChatGPT 桌面应用,Option+空格快速唤起。 Day10:OpenAI 发布电话倾诉功能 18002428478。 Day9:o1 满血版 API 和 4o 实时语音 API 更新。 Day8:AI 搜索功能免费开放,并支持实时语音搜索。 Day7:ChatGPT 全新“项目”功能发布。 Day6:实时视频通话&圣诞老人模式正式上线。 Day5:ChatGPT 与 Apple 的深度合作。 Day4:直播“翻车”的 Canvas。 Day3:Sora 终于上线,有案例和功能详解。 Day2:微调 O1 模型,低成本高效率。 Day1:强化学习微调的实操案例。 宝玉日报 12 月 18 日: AI 架构与技术选型的 4 条原则:选主流框架、确保测试覆盖率、避免私有框架、采用模块化设计。 OpenAI 12 天发布会第 9 天:o1 API 正式版速度更快成本降低,支持多种新功能;语音交互升级,引入 WebRTC 支持,处理费用降低;新增偏好微调功能和工具包,简化 API 密钥申请流程。 易观分析报告预测了 AI 技术未来的关键发展方向,德邦证券报告对 OpenAI 十二日发布会进行深度总结,认为随着大模型能力提升和应用场景扩展,AI 应用商业价值有望实现,建议关注相关领域。
2024-12-31
openai
以下是关于 OpenAI 的相关信息: AGI 的 5 个等级: 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与,尚未达到完全智能体水平。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 模型: GPT4(Beta):一组改进 GPT3.5 的模型,可理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可理解并生成自然语言或代码。 DALL·E(Beta):可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper(Beta):可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex(Limited Beta):一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 GPT、DALL·E、Sora 相关:Sora 的出现证明了 OpenAI 试图让计算机模拟真实物理世界的野心及对自身技术路线的坚持。从 OpenAI 发布的 Sora 的技术报告中可看到对过往大语言模型训练成功经验的复用。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现上分析了 Sora 成功的部分原因,以及从商业和技术趋势上分析了 OpenAI 能跑通全部技术栈的原因,并尝试预测了 OpenAI 下一步的进展。
2024-12-27
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27