直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

在comfyui中节点报错UNETLoader Error

回答

很抱歉,仅根据您提供的“在 ComfyUI 中节点报错 UNETLoader Error”这一信息,无法明确具体的错误原因和给出准确的解决方案。可能导致此报错的原因有多种,比如模型文件损坏、加载路径错误、相关依赖未正确安装等。建议您进一步检查报错的详细信息、模型文件的完整性以及相关配置是否正确。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
coze搭建工作流老是报错
搭建 Coze 工作流老是报错可能有以下原因和解决方法: 循环查询文章是否推送过: 循环体内部的数据库节点:用于在数据库中查询文章是否推送过,输入项为文章的 url 和用户的唯一标识 suid。SQL 语句可直接复制。记得设置输出项“combined_output”。同时,Coze 平台要求使用数据库功能时,需在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。 循环体内容的选择器:判断数据库查询内容是否为空,若为空则使用“文本处理”节点拼接文章完整信息。右下方的“文本处理”节点主要是为处理数据库查询到已推送情况的占位项,否则工作流会报错。设置循环节点输出项,选择循环体中“输出新文章内容”拼接后的字符串。 外层 bot 封装与调试: 封装过程包括创建 Bot、填写 Bot 介绍、切换 Bot 模式为“单 Agent(工作流模式)”、添加配置好的工作流、填写开场白并关闭开场白预置问题。 完成封装后在“预览与调试”区进行最终体验与调试。目前外层 bot 可能存在未知 bug,同一段 USER_INPUT 在工作流编辑面板中试运行正常,但在外层 bot 运行时容易报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,可直接在工作流编辑面板中获取精度结果。若自行实验时多次报错且无法定位原因,不要急于责怪自己,相关 bug 已提交给 Coze 团队等待优化。
2024-12-05
那为什么使用from matplotlib报错
很抱歉,目前没有关于“使用 from matplotlib 报错”的相关内容。可能导致这种报错的原因有很多,比如 matplotlib 库未正确安装、版本不兼容、代码中其他部分的冲突等。您可以检查一下 matplotlib 库的安装情况,确认是否与您当前使用的环境和其他依赖项相匹配。同时,查看报错信息中的具体提示,这通常能为您找到问题的线索。
2024-12-05
在comfyui中节点报错UNETLoader Error while deserializing header: MetadatalncompleteBuffei
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错‘UNETLoader Error while deserializing header: MetadatalncompleteBuffei’”的信息,难以准确判断问题的具体原因和解决办法。这可能是由于多种因素导致的,比如模型文件损坏、软件版本不兼容、配置错误等。建议您检查模型文件的完整性,确保 ComfyUI 软件为最新版本,并检查相关配置是否正确。如果问题仍然存在,您可以尝试在相关的技术论坛或社区中搜索类似问题,以获取更多可能的解决方案。
2024-12-04
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
训练loro时报错什么原因吗:f"NaN detected in latents: {info.absolute_path}"
在 Comfy UI 中训练 LoRA 模型时,出现“f"NaN detected in latents: {info.absolute_path}"的报错,可能有以下原因: 1. 数据方面:图像必须放在以“”命名的文件夹中,数字应较小,如 5,且必须有下划线。对于 data_path,需写入包含数据库文件夹的文件夹路径。 2. 参数方面:在第一行可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练最好选择一个基本模型。可选择一个名称为 LoRA 的模型,若默认值不合适可更改,epochs 数应接近 40。 3. 环境方面:按 Enter 键安装所有所需依赖项使其与 ComfyUI 兼容。若为 Comfy 使用了虚拟环境,必须首先激活它。Python 中需要斜杠,但节点会自动将反斜杠转换为斜杠,文件夹名称中的空格不是问题。 您可以根据上述情况检查和调整您的训练设置,以解决报错问题。
2024-10-15
comfyui 报错提示
以下是关于 ComfyUI 报错提示的一些常见情况及解决方法: 1. 如果报错提示“图片里面没有检查到面部”,这可能是在第一次运行时比较慢,也可能是网络环境没有下载 insightface。 2. 若节点报错显示“ERROR: Could not install packages due to an OSError: 拒绝访问。”,在命令后面输入“user”即可。 3. 本地安装 ComfyUI 时,如果终端显示某个模块下载失败或无法下载,可能是因为网络没有做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把配置添加到默认的终端启动项里,如:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890。或者考虑使用第三方镜像站下载,如 TUNA(https://pypi.tuna.tsinghua.edu.cn/simple)、网易(https://mirrors.163.com/pypi/)。 4. 终端显示“ERROR:Could not find a version that satisfies the requirement pyyaml”,这是因为缺少 pyyaml,可以运行相关命令完成安装后,再继续安装 ComfyUI。
2024-08-20
pip install -r requirements.txt ERROR: Could not open requirements file: [Errno 2] No such file or directory: 'requirements.txt' 怎么解决
以下是可能的解决方法: 1. 找到您的 ComfyUI 总文件夹,找到下面文件中的 python 文件夹(有些人的是 python_emembeded)中的 python.exe(可执行文件,右键属性复制路径,然后继续在相关文件路径下通过 cmd 进入终端,右键粘贴刚才的路径加“\\python.exe m pip install r requirements.txt”。 2. 本部分报错基本都是因为网络问题,大部分安装问题可以通过使用国内镜像源来解决。例如:在执行安装 requirements.txt 文件时,可以尝试使用“pip install i https://mirrors.aliyun.com/pypi/simple/ r D:/openai.wiki/stablediffusionwebui/requirements.txt”。这段代码可以理解为不使用官方下载地址,而是国内阿里云的镜像地址下载相关依赖组件。如果还是不能解决,请自行搜索 CMD 魔法上网,有一些魔法工具即便可以访问 Youtube、Google 等网站,也不代表它能够在 CMD 中是可以正常使用的,因为有一些魔法工具无法在 CMD 中被继承。 3. 如果出现“ERROR:Could not install packages due to an OSEr”,考虑在命令后面输入“user”。 4. PyPI 元数据包有问题,可以尝试执行“pip cache purge”清理缓存。
2024-10-19
Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co
以下是针对您所遇到的报错问题的一些解决建议: 1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。 2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 。 3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。 另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IPAdpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。
2024-09-03
comfyui入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 相关学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网站:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的入门教程,适合初学者,地址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 ComfyUI 共学 WaytoAGI 共学计划中的高频问题及自学资料: 1. 知识库跳转,展开菜单。 2. 。 3. 【海辛】因为一直被几个好朋友问 comfyui 怎么入门,给朋友录了几节 comfyui 基础课,顺手分享给大家~看完这 5 节应该就基本入门啦,然后可以看互联网上任何的进阶教程了。 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式:
2024-12-18
comfyui工作流
ComfyUI 工作流包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及图像放大和细化(SDXL)阶段,如加载 SDXL 模型、对初始图像进行锐化处理等,并进行最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/,流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud,支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,效果基本与其他模型一致甚至更优,但项目未开源。
2024-12-17
有没有根据布料照片和模特照片生成衣服上身效果的工具或 comfyUI 工作流
以下是一些与根据布料照片和模特照片生成衣服上身效果相关的工具和工作流: 1. 藏师傅的方法:将第二步的提示词和 Logo 图片放到 Comfyui 工作流就行。Lora 需要用到 InContext LoRA 中的 visualidentitydesign,可从以下地址下载:https://huggingface.co/alivilab/InContextLoRA/tree/main 。工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 2. 彭青云分享的内容:本地部署 Comfyui 有多种方式,如官方的本地部署包、秋叶整合包和二狗子老师制作的通往 AGI 之路黑猴子流专属包。处理好软件和模型后,打开一键启动,稍等片刻就会进入工作界面。通过正反提示词、文本链接图像,点击右侧队列即可生成图像。 3. ComfyUI BrushNet:原项目 https://tencentarc.github.io/BrushNet/ ,插件地址 https://github.com/kijai/ComfyUIBrushNetWrapper ,模型下载 https://huggingface.co/Kijai/BrushNetfp16/tree/main 。第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,也可手动下载放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。工作流方面,可配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。还可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。
2024-12-13
我想学习comfyui
以下是关于 ComfyUI 的相关学习信息: 学习资料: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通阶段的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 自动生成抠图素材: 作者学习使用 ComfyUI 的原因包括更接近 SD 的底层工作原理、自动化工作流、作为强大的可视化后端工具可实现 SD 之外的功能、可根据定制需求开发节点或模块等。 作者的工作室常需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目创建了工作流,可自动生成定制需求的抠图素材,全程只需几秒。 简介: ComfyUI 是基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,通过拆分流程为节点实现精准工作流定制和完善的可复现性。 优势:对显存要求相对较低,启动和出图速度快;生成自由度高;可和 webui 共享环境和模型;能搭建工作流程,导出并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原工作流程并选好模型。 劣势:操作门槛高,需要清晰逻辑;生态没有 webui 多,但有针对 Comfyui 开发的有趣插件。 官方链接:从 github 下载作者部署好环境和依赖的整合包,按照官方文档安装。https://github.com/comfyanonymous/ComfyUI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-12
有什么 comfyui 的第三方 api 服务
ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。以下是关于 ComfyUI 的一些详细信息: 生图原理: 1. 在去噪过程中,模型使用编码后的文本向量来引导图像生成,以确保生成的图像与输入的文本描述相符。 2. 提供了多种采样算法(如 Euler、DDIM、DPM++等)来控制去噪过程,不同采样器可能产生不同结果或影响生成速度。 3. VAE 由编码器和解码器组成。编码器输入图像并输出表示其特征的概率分布,解码器将概率分布映射回图像空间。 4. 最终生成的图像显示在界面上,用户可保存、编辑或用于其他目的。 5. 支持多种高级功能,如图像到图像、Lora、ControlNet、ipadapter、放大和后处理等。 节点认识: 1. 核心是节点式界面,用户可通过拖放和连接各种节点创建自定义图像生成工作流。 2. 节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。 3. 用户可通过拖动节点间的连接线构建工作流,连接线代表数据流动。 4. 除内置节点,用户还可创建自定义节点扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。 5. 提供丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。 其他原理: 1. 涉及 Pixel Space(像素空间)和 Latent Space(潜在空间),输入图像的像素空间对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像,许多操作在潜在空间中进行。 2. 扩散过程表示从噪声生成图像的过程,通过调度器控制,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。
2024-12-10
COMFYui安装包
以下是关于 COMFYui 安装包的相关信息: 1. 安装地址: https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包。 安装包文件:ComfyUI.zip 、 2. 安装步骤: 下载安装包并解压至本地除 C 盘外的任意盘。 找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 3. 相关环境安装(安装过 WebUI 的同学请忽略): 依次下载并安装 python(版本 3.10 以上)、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python: 安装 VSCode: 安装 Git: 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 目前安装 ComfyUI 的方法有在本地安装和在云端安装两种,本部分主要介绍本地安装方法,包括命令行安装和安装包安装。命令行安装普适性最强但有一定门槛,ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。安装包安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。
2024-12-05