直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

sora是stable diffusion中的一部分吧

回答

Sora 与 Stable Diffusion 有关联。自 2021 年以来,AI 领域出现了能解释人类指令的生成式语言和视觉模型,如 CLIP 和 Stable Diffusion。Stable Diffusion 采用变压器架构和潜在扩散技术解码文本输入生成图像。2023 年出现了商业文本到图像产品,如 Stable Diffusion 等。Sora 是一个重大突破,能根据人类指令生成长达一分钟的视频。从技术架构上,Stable Diffusion 3 后续版本有希望成为 Sora 的开源平替。此外,在一些观点中,Sora 就在 Stable Diffusion 这样的文生图模型之外加了一个时间维度,虽然方法类似,但数据高维很多,实现工程难度大。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

自2021年以来,AI领域的一个重要焦点是能够解释人类指令的生成式语言和视觉模型,即多模态模型。例如,CLIP[18]是一种开创性的视觉-语言模型,它将变压器架构与视觉元素相结合,使其能够在大量的文本和图像数据集上进行训练。通过从一开始就整合视觉和语言知识,CLIP可以在多模态生成框架中充当图像编码器。另一个值得注意的例子是Stable Diffusion[19],这是一个多才多艺的文本到图像AI模型,以其适应性和易用性而受到赞誉。它采用变压器架构和潜在扩散技术来解码文本输入,并生成各种风格的图像,进一步展示了多模态AI的进步。随着2022年11月ChatGPT的发布,我们在2023年见证了商业文本到图像产品的出现,如Stable Diffusion[19]、Midjourney[20]、DALL-E 3[21]。这些工具使用户能够用简单的文本提示生成高分辨率和高质量的新图像,展示了AI在创意图像生成方面的潜力。然而,从文本到图像过渡到文本到视频由于视频的时间复杂性而具有挑战性。尽管工业界和学术界做出了许多努力,但大多数现有的视频生成工具,如Pika[22]和Gen-2[23],仅限于生成几秒钟的短视频片段。在这种背景下,Sora代表了一个重大突破,类似于ChatGPT在NLP领域的影响。Sora是第一个能够根据人类指令生成长达一分钟的视频的模型,标志着对生成式AI研究和开发产生深远影响的里程碑。为了便于轻松访问最新的视觉生成模型进展,最新的作品已被汇编并提供在附录和我们的GitHub中。

Stable Video Diffusion模型核心内容与部署实战

1、直接使用百度网盘里面准备好的资源,可以规避掉90%的坑;2、如果一直报显存溢出问题,可以调低帧数或增加novram启动参数;3、针对云部署实战部分,基础依赖模型权重有两个models–laion–CLIP-ViT-H-14-laion2B-s32B-b79K和ViT-L-14.pt,需要放到指定路径下;4、加入「AIGCmagic社区」群聊,一起交流讨论,涉及AI视频、AI绘画、Sora技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个不同方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群!![heading1]——总结——[content]在Sora发布之后,似乎在这之前的所有视频生成模型都已黯淡无光,难以与之争锋!然而Stable Video Diffusion作为开源项目,我们可以在自己的机器上自由创作而无需充值,这也是其独特优势!从技术角度看,SVD生成的视频画质非常清晰,帧与帧之前的过渡也非常的自然,无论是背景闪烁的问题,还是人物一致性的保持都能够得到妥善解决!尽管目前只能生成最多4秒的视频,与Sora生成的60s视频差距很远,但是SVD还在不断迭代,相信其终将再次强大!!!同时,我们会持续关注SVD技术及前沿视频生成技术,尝试多种不同的部署微调方式,介绍更多视频生成的技术模型,更多精彩内容会在后续文章中放出,敬请期待!!!

【降低噪声】普通人也能一文读懂Sora系列

1.Sora的背后没有物理引擎,有的是DiT架构的Diffusion Transformer,大家能看到的对场景模拟的真实性,是Transformer在大数据量的情况下的强大刻画能力的体现,和大语言模型涌现出逻辑推理等能力是类似的现象。对比来看,可以理解成Sora就在Stable Diffusion()这样的文生图模型之外,加了一个时间维度。而Patches这样的降维方法,已经是业内比较成熟的方法。视频因为是运动的,讲故事能力更强,所以观感上让我们很震撼,但从机器来看,既然每一个像素就有几维向量,再加一个时间复杂度维度,并不是那么本质的变化。当然,虽然方法类似,数据还是高维了很多,很多问题要解决,而且实现起来工程难度是非常大的。2.“世界模拟”和“通用人工智能AGI”是愿景。怎么理解OpenAI把Sora定义为“世界模拟”?网上有很多讨论,认为Sora做世界模拟不现实,这样的讨论我觉得就偏颇了,我倾向于认为“世界模拟”是一个非常好的项目愿景,和“通用人工智能”作为整体的愿景一样起到非常正面的作用。愿景既是也不是产品目标,就像“人人平等”一样,是努力的方向,重要的是引发的思考,带来的激励作用,以及能聚集的资源,这两个都是具有号召力的愿景,而且不是完全达不到,所以是非常好的。3.Stable Diffusion 3后续版本有希望成为Sora的开源平替。从目前公开的信息来看,这两个产品从技术架构上有相当的类似性,都是基于DiT架构,而且SD 3承诺了会继续开源(目前还没有),Stable也说会具有视频和3D的能力,和之前的SD版本相比,这是一个新的技术的基础,后续有更多的升级的空间。值得关注。

其他人在问
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 若在太暗情况下拍照产生的颗粒状即图像中的噪点。Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以H.R. Giger风格描绘的外星人弹吉他的图像,它能像熟练的平面艺术家一样利用对Giger艺术作品和世界的了解来清理图像。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 开始生成的方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定风格的画。稳定扩散能做到是因为它是基于统计数据的计算机程序,会估计所有选项的概率,即使概率都极低,也会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给它不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI的生图原理: ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。 Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI中的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程。在ComfyUI中,通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,会根据不同的采样策略逐步将噪声还原为图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步。在ComfyUI中,可通过控制步数来影响图像生成的精细度和质量。
2024-12-18
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点:如果拍照太暗会产生噪点,而 Stable Diffusion 用于生成艺术作品时,在幕后所做的是“清理”图像。它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以特定风格描绘的图像,它能像艺术家一样利用对相关艺术作品和世界的了解来清理图像。 “推理步骤”:稳定扩散是逐步去除噪点的,通过“推理步骤”滑块可以控制。 开始方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定的画。在最简单层面上,它作为计算机程序会做事并生成东西。更深层次上,它基于统计数据,估计所有选项的概率,即使概率极低也会选择最高概率的路径,比如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI 的生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process):表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器来控制如何在潜在空间中处理噪声以及逐步去噪回归到最终图像。生成图像时会进行多个去噪步,通过控制步数可影响图像生成的精细度和质量。
2024-12-18
stable diffusion通俗讲解
Stable Diffusion 是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过 CLIP Text Encoder 模型这一“桥梁”转换为机器数学信息,该模型将文本信息编码生成 Text Embeddings 特征矩阵用于控制图像生成。 初始 Latent Feature 经过图像解码器重建是纯噪声图片,而经过 SD 的“图像优化模块”处理后再重建是包含丰富内容的有效图片。UNet 网络+Schedule 算法的迭代去噪过程的每一步结果用图像解码器重建,可直观感受从纯噪声到有效图片的全过程。 以下是 Stable Diffusion 模型工作的完整流程总结及前向推理流程图。 此外,关于 Stable Diffusion 还有系列资源,包括从 0 到 1 读懂其核心基础原理、训练全过程,核心网络结构解析,搭建使用模型进行 AI 绘画的多种方式,经典应用场景,以及上手训练自己的 AI 绘画模型等内容。
2024-12-17
Stable Diffusion 启动器
以下是关于 Stable Diffusion 启动器的相关内容: 整合包: 觉得麻烦的同学可以使用整合包,解压即用。比如也非常好用,将启动器复制到下载仓库的目录下即可,更新管理会更方便。 电脑配置能支持 SD 运行的朋友,可以使用 B 站秋叶分享的整合包。具体安装方法: 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru),下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”,选择解压到 D 盘或者 E 盘。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,创建桌面快捷方式。 启动器设置: 打开启动器后,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。不过并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。 xFormers 能极大地改善内存消耗和速度,建议开启。准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同样地,也请注意插件的更新。 插件: Stable Diffusion 可配置大量插件扩展,在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 低配置电脑: 电脑配置较低的朋友,可通过云平台畅玩 SD,比如“青椒云”。使用方法: 点击链接(http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY)注册账号。 下载并安装后,登录账号。 点击右上角的个人中心进行实名认证。 在进行实名认证后回到主界面,点击新增云桌面。想玩 Stable Diffusion 可以选“AIGC 尝鲜”,一般新注册的会有优惠券,可以免费试用。 在新弹出的框框中点击“开机”按钮,稍等一下之后,点击“进入桌面”。进入桌面之后弹出的全部框框可以直接关掉。 点击新打开桌面的“此电脑”,在 C 盘里面找到 SD 的根目录,点击“A 启动器.exe”。 点击右下角的“一键启动”就可以进入 SD。用完云平台之后,记得关机,不然会持续计费。
2024-12-13
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 1. 消除图像中的噪点: 如果在太暗情况下拍照产生的颗粒状即图像中的噪点。 Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。 它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以特定风格描绘的图像,它能像熟练的平面艺术家一样进行清理。 2. “推理步骤”: 稳定扩散是逐步去除噪点的。 以运行 25 步为例,起始图像可能完全无法辨认,实际上最初是从完全的噪点开始。 3. 开始方式: 为生成艺术,给稳定扩散提供纯噪点的初始图像并告知相关描述。 稳定扩散能做到是因为它是计算机程序,且基于统计数据,估计所有选项的概率,即使正确概率极低,仍会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给不同纯噪点图像,都会创作出不同艺术作品。 ComfyUI 的生图原理: 1. Pixel Space(像素空间)和 Latent Space(潜在空间): Pixel Space:图的左边表示输入图像的像素空间,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时转换回像素空间生成最终图像。 Latent Space:ComfyUI 中的许多操作在潜在空间中进行,如 KSampler 节点执行采样过程,图像映射到潜在空间后扩散过程在此进行,可通过节点调整潜在空间的操作。 2. 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声及逐步去噪回归到最终图像。 时间步数:生成图像时扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。
2024-12-05
FLUX stable diffusion
以下是关于 FLUX stable diffusion 的相关信息: ComfyUI 的生图原理:ComfyUI 使用预训练的扩散模型作为核心,包括 FLUX 等模型。在节点化界面中,用户可通过不同模块控制潜在空间操作、UNet 中的推理步骤及条件输入。 稳定扩散的运作:稳定扩散通过逐步去除图像中的噪点来生成艺术作品,它了解世界和书面语言以指导噪点消除过程。 Flux 工具: 制作团队:原 stable diffusion 核心团队因开源理念不合,成立“黑森林”团队,推出 Flux。 型号:首次发布三种型号,包括 Flux pro(闭源使用)、Flux dev(开源,供学习研究,不支持商用)、Flux schnell(开源,开源最彻底,支持商用)。 参数量:参数训练量达 12B,语言支持自然语言。相比之下,SD3 Large 训练参数 8B,SD3 Medium 训练参数 2B。 硬件要求:推理 dev 版本的 Flux 模型时,最低显存需要 16G,建议 24G,模型本身大小约 22G。训练时,优化后 16G 可训练 Lora 模型,DB 方式训练微调模型除显存最低 24G 外,内存需 32G 以上。
2024-11-29
sora教程
以下是关于 Sora 及相关的教程信息: AI 视频方面: 软件教程: 工具教程: 应用教程: Python + AI 方面: 对于不会代码的人,有 20 分钟上手的教程,包括通过 OpenAI 的 API 生成文章缩略信息的代码重写及相关操作步骤。同时提醒妥善保管 API Key,OpenAI 的综合文档、API 使用、API Playground、API 案例与答疑的相关网址为:https://platform.openai.com/docs/overview 、https://platform.openai.com/docs/apireference 、https://platform.openai.com/playground 、https://cookbook.openai.com/ 。 工具教程: 开放公测,群友有实测案例。可参考卡兹克的教程介绍:https://mp.weixin.qq.com/s/YGEnIzfYA3xGpT9_qh56RA 以及 zho 总结的官方网站的案例。目前除每日 150 个赠送积分外,还新增积分购买选项,可操作固定种子、步数、运动幅度,交互也很有意思,在生成过程中会有案例标注。 此外,还有几个视频 AIGC 工具:Opusclip 可将长视频剪成短视频,Raskai 能将短视频素材直接翻译至多语种,invideoAI 输入想法后可自动生成脚本和分镜描述进而生成视频再人工二编合成长视频,descript 可对屏幕/播客录制并以 PPT 方式做视频,veed.io 能自动翻译自动字幕,clipchamp 是微软的 AI 版剪映,typeframes 类似 invideoAI 但内容呈现文本主体比重更多,google vids 是一款相关工具。Sora 是 OpenAI 发布的超强视频生成 AI,能通过处理各种视觉数据生成视频,使用视频压缩网络和空间时间补丁统一不同来源数据,并借助文本条件化的 Diffusion 模型生成与文本提示匹配的视觉作品。
2024-12-17
ChatGPT与Sora 是不是只有苹果手机或苹果电脑才能注册与登入?
ChatGPT 注册与登录: 苹果系统: 中国区正常无法在 AppleStore 下载 ChatGPT,需切换到美区。美区 AppleID 注册教程可参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。 最终在 AppleStore 搜到 ChatGPT 下载安装,注意别下错。 打开支付宝,地区切换到美区任意区,购买【App Store&iTunes US】礼品卡,按需要金额购买(建议先买 20 刀),然后在 apple store 中兑换礼品卡,在 chatgpt 中购买订阅 gpt plus,中途不想继续订阅可到订阅列表中取消。 会员不管在苹果还是安卓手机上购买的,电脑上都能登录。 注册美区 ID 详细步骤: 1. 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 2. 填写验证码后点继续。 3. 到谷歌邮箱接收邮箱验证码。 4. 接着验证手机号码。 5. 验证完后会出现页面,此时美区 ID 已注册但未激活,切换到手机操作。 6. 打开 App Store,点击右上角人形头像。 7. 拉到最底下,点击退出登录,先退出国内的 ID。 8. 之后再点击右上角人形头像。 9. 手动输入美区 ID,会收到短信进行双重验证。 10. 之后完成美区的 ID 登录。 11. 随便找个软件下载,会弹出提示,点击“检查”进行激活。 12. 点击同意,进入下一页填写美国地址。 13. 若付款方式中没有“无”或“none”选项,输入街道地址和电话。 14. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,可用于下载例如小火箭、ChatGPT、Discord、X、TikTok 等软件。 关于 Sora 的注册与登录相关信息未提及。
2024-12-16
Sora是什么
Sora 是 OpenAI 发布的一个文本到视频的生成模型。 它具有以下特点和能力: 1. 能够根据描述性的文本提示生成高质量的视频内容。 2. 其生成的视频不仅逼真且充满想象力,能创造出各种场景。 3. 可以生成长达 1 分钟的超长视频,且是一镜到底的,视频中的人物和背景等具有惊人的一致性和稳定性。 4. 虽然在技术界引起广泛关注和讨论,但目前 OpenAI 未公开发布,仅向少数研究人员和创意人士提供有限访问权限以获取使用反馈并评估技术安全性。 在图像生成能力方面,Sora 能生成图像,虽不及 Midjourney,但优于 Dalle 3。此外,Sora 在视频游戏模拟中也具有一定的能力。
2024-12-16
Sora怎么使用
Sora 是一个强大的视频生成模型,具有以下特点和使用方式: 1. 可作为世界模拟器,能够在两个输入视频之间逐渐插值,创建在完全不同的主题和场景构成之间的无缝过渡。 2. 它使用视频压缩网络和空间时间补丁来统一不同来源的数据,然后借助文本条件化的 Diffusion 模型生成与文本提示匹配的视觉作品。 3. 从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器,有三个部分: 时空压缩器首先将原始视频映射到潜在空间。 ViT 然后处理标记化的潜在表示,并输出去噪的潜在表示。 类似 CLIP 的条件机制接收 LLM 增强的用户指令和可能的视觉提示,以指导扩散模型生成风格化或主题化的视频。经过多次去噪,生成视频的潜在表示被获得,然后通过相应的解码器映射回像素空间。 此外,关于 Sora 的使用,各家 AI 最细致的教程几乎都在其官网上,例如 OpenAI 的综合文档:https://platform.openai.com/docs/overview ,API 使用:https://platform.openai.com/docs/apireference ,API Playground:https://platform.openai.com/playground ,API 案例与答疑:https://cookbook.openai.com/ 。同时,请注意妥善保管 API Key,它是扣费凭证,不要泄漏。
2024-12-13
Sora实测效果如何
Sora 是 OpenAI 推出的革命性模型,于 2024 年 12 月 10 日正式登场。它具有以下特点和实测情况: 功能: 文生视频、图生视频、视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。 故事板功能,允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑功能,提供视频混音,支持视频的延伸和剪辑,以及创建循环视频。 高级功能包括混合功能,可以将两个视频场景合并成一个新的场景。 费用和订阅套餐: 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用包含在现有订阅中。 OpenAI Plus 订阅每月有 50 次视频生成次数。 OpenAI Pro 订阅有无限次慢速队列生成和 500 次正常速度的视频生成次数。 选择更高分辨率的视频生成可能会减少每月的使用次数。 实测案例: 有正面报道,如《》等。 也有负面报道,如《》。 有博主已经做了提前测试,如 This Video is AI Generated!SORA Review(https://www.youtube.com/watch?v=OY2x0TyKzIQ )。 大家的测试和创意包括:能够识别一段长内容并且文字形体不变形,根据新闻创建适合在 tiktok 上传播的短视频等。 体验 Sora 的魔力可访问: 。2 点直播链接:https://www.youtube.com/watch?v=2jKVx2vyZOY 。Sora 发布初期,某些地区(如欧洲和英国)可能会有延迟。
2024-12-13
sora优势
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型,具有以下优势: 1. 核心技术:Sora 的核心是一个预训练的扩散变换器,能够解析文本并理解复杂的用户指令。它将原始输入视频压缩成时空潜在表示,提取时空潜在补丁作为构建块,通过多步精炼生成视频。 2. 模拟能力:Sora 进行大规模训练,展现出模拟物理世界各方面的显著能力,包括具有动态相机运动、长距离连贯性、对象持久性和模拟与世界的简单互动,还能模拟数字环境。 3. 促进创造力:能根据文本提示快速生成现实或高度风格化的视频,加速设计过程,提高艺术家、电影制作人和设计师的创造力。 4. 数据预处理:Sora 能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据多样性,在各种格式上采样而不损害原始尺寸,显著改善生成视频的构图和框架,实现更自然和连贯的视觉叙事。 5. 生成能力:能根据用户文本指令生成长达 1 分钟的高质量视频,包含多个执行特定动作的角色以及复杂背景的详细场景,具有高视觉质量和引人入胜的视觉连贯性,能生成细腻运动和互动描绘的扩展视频序列。
2024-12-11
请问midjourney cref和sref的区别,如果我想引用一张图,但只是把它作为新图的一部分如何写prompt
在Midjourney中,`cref`和`sref`都是用于引用图片的功能,但它们的作用和使用方式有所不同: 1. 角色参考(cref):`cref`的功能是保持图像角色的一致性。根据你提供的现有角色图像的URL, 生成与之相似的角色。使用方法是在提示后添加 `cref`,并紧接着指向人物参考图像的 URL。例如:`/imagine prompt beautiful girl cref `。您可以使用 `cw` 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):`sref`的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 `sref`,并紧接着指向风格参考图像的 URL。例如:`/imagine prompt beautiful girl sref `。您可以使用 `sw` 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果你想引用一张图,但只是把它作为新图的一部分,你可以使用 `sref` 或 `cref`,并通过调整 `sw` 或 `cw` 的值来控制引用图像的影响程度。 例如,如果你想引用一张图的风格,但只希望它占新图的一部分,你可以这样写提示:`/imagine prompt beautiful girl sref sw 500`。这样,生成的图像将会在保持原有风格的同时,融入一部分引用图像的风格¹。 希望这些信息对您有所帮助!如果您有其他问题,欢迎随时向我提问。
2024-04-21