Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

有什么文物保护方面的AI 应用

Answer

以下是一些文物保护方面的 AI 应用:

  • 雕塑上色:通过工具如即梦、可灵、Runway、Suno、剪映等,为原本没有颜色的雕像上色,增强控制力,使上色过程有趣且效果偏写实,还能实现人物漂浮等效果。
  • 活化画卷:利用 Runway 让固定的画卷复活,基本保持原有画风,同时实现画面动态效果。
  • 佛像动作创作:让佛像转身并进行具有反差感的动作,如跳舞等。尝试多种主流模型后,使用可灵的运动笔刷和剪映来实现,可灵运动笔刷识别效果好,有独特的静态笔刷,能实现特殊运动轨迹,剪映便于提取尾帧和使用内置模板进行剪辑。

您可以通过以下链接查看详细步骤:https://waytoagi.feishu.cn/wiki/CpHcwFEmXiWmUbkGrgecOum6n6d

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 博物馆奇妙日- AI切磋大会第n期

[heading5]雕塑上色(二)[10月18日(2).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/ErqNbWYOpo0L09xFWXQcSjhzn9e?allow_redirect=1)创作思路:文物上色在Runway只有文生图时期,我参考X上的攻略,玩过很多不同的变形,其中有泼洒颜料后组成各种物体的玩法。于是联想到可以利用这个玩法,给原本没有颜色的雕像上色,并且把上色的过程做得比较有趣。为了增强控制力,选择了使用首尾帧模式,尾帧使用基于文物原图的重绘,做成偏写实的形象。并且通过把这张图放到可灵中来实现人物漂浮的效果涉及工具:即梦,可灵,Runway,Suno,剪映为什么选这个工具即梦:最简单,易用的图片重绘工具,云端访问,无需付费可灵:运动笔刷极强的控制力Runway:能很好地实现泼墨+画面上色Suno:尝试一下新的使用视频制作歌曲的效果[点击查看详细步骤](https://waytoagi.feishu.cn/wiki/CpHcwFEmXiWmUbkGrgecOum6n6d)

AI 博物馆奇妙日- AI切磋大会第n期

[heading5]雕塑上色[辽木雕.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/TpxibemsIo01GexGKqvcSQI9nhb?allow_redirect=1)创作思路:给文物上色涉及工具:runway,剪映为什么选这个工具:runway可以让固有想法的物体变得动态,runway gen3的V2V,可以让物体重新建模,重新上色,再把背景上个色,传到剪映,加上BGM。[点击查看详细步骤](https://waytoagi.feishu.cn/wiki/CpHcwFEmXiWmUbkGrgecOum6n6d)[heading5]活化画卷(一)[content][Gen-3 Alpha Turbo 3819459057,he style of Chinese,Cropped -韩滉五牛图卷-5w,M 5.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/TAwTb2Jy2oST7RxEHIncHCdMnlh?allow_redirect=1)创作思路:让固定的画面复活涉及工具:runway为什么选这个工具:这个工具基本可以保持画风,可以做到画面动,又不脱离风格[点击查看详细步骤](https://waytoagi.feishu.cn/wiki/CpHcwFEmXiWmUbkGrgecOum6n6d)

AI 博物馆奇妙日- AI切磋大会第n期

[佛像的疯狂舞蹈.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/P13qbyLdhoFHisxlZmtcHCHRnhY?allow_redirect=1)[10月17日(1).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/E2ZEbflNroGA30xj4J9cBrbWnAc?allow_redirect=1)1.创作思路让这个佛像转过身来,并进行一些具有反差感的动作,如跳舞。或者在之后产生某些奇妙的变化,比如说发光的棍子被拿在手中。但尝试了如luma,即梦、runway等主流模型之后发现转身环节都容易出问题,因此决定利用可灵的运动笔刷(仅1.0模型支持使用)来进行客观规律无法实现的运动轨迹(比如说佛像),在完成第一步之后,导入剪映之中提取尾帧采用可灵1.5来生成较大的动作效果。1.用到哪些工具可灵,剪映1.为什么选这个工具可灵的运动笔刷识别效果极好,且拥有其他视频模型都没有的静态笔刷,通过静态笔刷的使用,可以阻止常规ai视频模型生成过程的无效镜头运动。采用剪映内置的功能可以较好的提取视频尾帧以便于后面片段的生成,且剪映里面内置了许多模板,作为剪辑小白来说我可以一步到位找现成。[点击查看详细步骤](https://waytoagi.feishu.cn/wiki/CpHcwFEmXiWmUbkGrgecOum6n6d)

Others are asking
列车国内最强的图像生成类AI并进行简单介绍和基础教程操作
目前国内图像生成类 AI 有很多优秀的产品,难以明确指出哪一个是最强的。一些常见且表现出色的图像生成类 AI 包括百度的文心一格、字节跳动的云雀等。 以文心一格为例,其基础操作教程通常如下: 1. 访问文心一格的官方网站。 2. 注册并登录账号。 3. 在操作界面中输入您想要生成图像的描述关键词。 4. 选择生成图像的风格、尺寸等参数。 5. 点击生成按钮,等待系统生成图像。 不同的图像生成类 AI 可能在操作细节上有所差异,但大致流程相似。您可以根据自己的需求和使用体验选择适合您的图像生成类 AI 工具。
2024-12-26
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-26
这几天ai领域有没有突破性的论文
以下是这几天 AI 领域的一些相关论文和研究成果: 1. 《山姆·奥特曼传(二):OpenAI 的第一次内斗》中提到,2017 年 Google Brain 团队撰写的论文《Attention is All You Need》介绍了 Transformer 架构,彻底改变了 AI 领域的格局。OpenAI 在其技术领袖伊利亚的推动下,基于 Transformer 架构开发了 GPT 系列模型。 2. 《2024 人工智能报告》中包含了关于 AI 在未来一年的 10 个预测,如一个主权国家向美国大型人工智能实验室投资 100 亿美元以上需要国家安全审查,没有任何编码能力的人独自创建的应用程序或网站将会迅速走红等。 3. 《入门经典必读》中指出人工智能的研究正在以指数级别的速度增长,文中分享了一份用于更深入了解现代 AI 的精选资源列表,其中提到从 2017 年谷歌发布的“Attention is All You Need”这篇开启了生成 AI 时代的论文开始的一系列里程碑式研究成果。
2024-12-26
AI根据素材生成视频
以下是关于 AI 根据素材生成视频的相关信息: 在 Adobe 产品的 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建内容的随机性。如果使用相同的种子、提示和控制设置,可以重新生成类似的视频剪辑。选择“Generate”即可。 如果想用 AI 把小说做成视频,制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 根据视频脚本生成短视频的 AI 工具有多种,以下是一些工具: 1. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:这是一个 AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory 将帮助生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:这是一个 AI 视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
AI 生成论文工具
在论文写作领域,AI 技术提供了多方面的辅助,以下是一些相关的工具和使用方法: 一、论文写作的 AI 产品 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、AIGC 论文检测网站 1. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用时上传论文,系统自动分析并提供报告,标示可能由 AI 生成的部分。 2. Copyscape:主要检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 三、利用 AI 写课题的步骤和建议 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 请注意,AI 工具是辅助手段,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,保证研究质量和学术诚信。
2024-12-26
AIGC视频生成领域的最新技术动态
以下是 AIGC 视频生成领域的最新技术动态: 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,其涉及深度学习技术如 GANs 和 Video Diffusion。视频生成可用于娱乐、体育分析和自动驾驶等领域,且经常与语音生成一起使用。 用于语音生成的模型可以由 Transformers 提供,可用于文本到语音的转换、虚拟助手和语音克隆等。生成音频信号常用的技术包括循环神经网络(RNNs)、长短时记忆网络(LSTMs)、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 此外,AIGC 周刊中也有相关动态: 2024 年 7 月第三周:未提及视频生成领域的具体内容。 2024 年 7 月第四周:未提及视频生成领域的具体内容。 2024 年 7 月第五周:未提及视频生成领域的具体内容。 2024 年 8 月第一周:未提及视频生成领域的具体内容。 在 AIGC 概述中提到,AIGC 主要分为语言文本生成、图像生成和音视频生成。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。
2024-12-26
人工智能教育领域的应用
人工智能在教育领域的应用广泛且具有颠覆性,主要体现在以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师能引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 同时,北京大学教育学院教授汪琼指出,教育领域的数字化转型不能只是将传统教育方式搬到线上,还需新解决方案,技术创新应用和数据整合挖掘是关键。我们正进入新时代,AI 成为教与学的伙伴,但在迎接新一代人工智能发展带来的挑战时,必须注意“信息茧房”的危害,平衡其潜力与局限,注意技术引入的全局影响。 然而,AI 技术对传统教育体系的冲击也带来诸多挑战,如教育体系内部惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2024-12-26
零编程基础的人会使用的低代码应用开发工具
以下是一些零编程基础的人可以使用的低代码应用开发工具: 1. Notion 和 Airtable:人们可以用其制作电子表格来管理课程、个人仪表板等,执行复杂操作,但工作托管在云端,需支付订阅费,且自主权受限。 2. Coze:新兴的低代码开发平台,用户无需编程基础,通过自然语言操作和拖拽式工作流,能可视化构建复杂逻辑,搭建 AI 对话机器人,并发布到社交平台和通讯软件上。 3. Bolt․new:用户只需撰写简单提示,它能自动写代码、运行、部署复杂全栈应用,全部在浏览器中完成,无需安装额外软件,但处于 alpha 测试阶段,可能存在问题,目前仅支持小到中型仓库。
2024-12-26
企业微信自建应用可以接扣子api么
企业微信自建应用能否接入扣子 API 的相关信息如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,设置过期时间为永久有效,选择指定团队空间,勾选所有权限,并保存好令牌的 Token,切勿向他人泄露。 获取机器人 ID,在个人空间中找到要接入微信的机器人,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为该机器人的 Bot ID。 进行 API 授权,点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 可以通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,而且可以参考相关教程将扣子接入微信机器人,但有微信封号风险。 对于扣子插件的搭建,GET 方法中传递参数的方式包括 Body(通常在 GET 方法中不用于传递参数)、Path(可传递参数,常编码为 URL 一部分)、Query(最常用的参数传递方式)、Header(通常不用于传递参数,而是定义请求头部信息)。配置输出参数时,若填写无误可点击自动解析,调试与校验时可查看输出结果。
2024-12-25
如何学习应用AI
以下是关于学习应用 AI 的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、针对不同人群的学习建议 1. 对于中学生: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。 2. 对于偏向技术研究方向的学习者: 掌握数学基础,如线性代数、概率论、优化理论等。 学习机器学习基础,包括监督学习、无监督学习、强化学习等。 深入研究深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 钻研自然语言处理,包括语言模型、文本分类、机器翻译等。 探索计算机视觉,如图像分类、目标检测、语义分割等。 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等,并进行科研实践,包括论文阅读、模型实现、实验设计等。 3. 对于偏向应用方向的学习者: 具备编程基础,如 Python、C++等。 掌握机器学习基础,如监督学习、无监督学习等。 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 了解应用领域,如自然语言处理、计算机视觉、推荐系统等。 掌握数据处理,包括数据采集、清洗、特征工程等。 学会模型部署,如模型优化、模型服务等,并进行行业实践,包括项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
大模型在办公场景的应用
大模型在办公场景有诸多应用,具体如下: 基础办公提效:在 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等方面,能从单个任务 task 到角色 role 再到角色间协同 collaboration 显著提高工作效率。 人力资源管理:覆盖招聘初期(如职位描述生成、简历分析、面试题设计)、员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)以及员工培训与发展各个环节,提高工作效率。 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 此外,在游戏行业,大模型能降低成本,打造创新玩法,提供更好的游戏体验。如网易推出的首款 AI 手游《逆水寒》,将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特剧情体验,还内嵌了全自动“AI 作词机”。在健身行业,AI 减重顾问既能解决售前客服问题,也能解决学员离开健身营之后的健康监护,提高学员体验。
2024-12-25
目前国内有哪些AI工具,他们分别在哪方面比较厉害
目前国内有以下一些比较出色的 AI 工具: 1. 图像类: 可灵:由快手团队开发,主要用于生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可使用。但某些类型的图像因国内监管要求无法生成,处理非中文语言或国际化内容可能存在不足。 2. 编程类: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,可为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于 130 亿参数的预训练大模型,能快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研基础大模型微调。 Codeium:通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择。
2024-12-26
学习AI可以从哪几个方面去学习
学习 AI 可以从以下几个方面入手: 1. 编程语言:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响。 对于新手学习 AI: 1. 了解 AI 基本概念: 阅读相关入门文章,熟悉术语和基础概念。 了解人工智能的主要分支及它们之间的联系。 2. 开始学习之旅: 参考为初学者设计的课程,如李宏毅老师的课程。 通过在线教育平台按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧。 4. 实践和尝试: 理论学习后进行实践,巩固知识。 分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 如果希望继续精进,对于不会代码的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 4. 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-25
我想要一些关于AI的研究报告,技术、产业、产品方面都可以
以下是为您提供的一些关于 AI 的研究报告: 《》:Kimi 发布视觉思考模型 k1,在最新版 App 和 Web 端上线。k1 模型基于强化学习技术打造,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。 《》:由量子位智库发布,聚焦 AI 技术及其在各行业的应用趋势。报告指出 AI 已成为科技发展的主旋律,对全球产业产生深远影响。内容涵盖技术、产品、行业篇,探讨了大模型创新、AI 应用格局、产品趋势、行业渗透率等十大趋势。报告还分析了 AI 在千行百业中的落地情况,包括智能驾驶、具身智能、智能硬件、游戏、影视、营销、教育和医疗等行业,展现了 AI 技术如何推动行业变革和增长。 关于 AI 产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图 5 和图 6。 此外,还有以下相关的课件和内容供您参考: 【创新公司观察】 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】:https://gamma.app/docs/AIcjqug2f9vtw5m8i 【商业观察】 AI 变革公司/产业实践探索 02:2023 年年报,看中国上市公司怎么使用生成式 AI:https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AI 变革公司/产业实践探索 01:安克创新的 AI 实践分析:https://gamma.app/docs/AI01AI5to7cl1o2ebvhrn 【AI 生存探索】
2024-12-24
从集团标准化管理、应用赋能、运营定位、迭代提升四个方面展开阐述人工智能赋能连锁药店运营管理的核心竞争力
很抱歉,目前知识库中没有关于从集团标准化管理、应用赋能、运营定位、迭代提升四个方面阐述人工智能赋能连锁药店运营管理核心竞争力的相关内容。但我可以为您提供一个大致的框架思路供您参考: 集团标准化管理方面: 利用人工智能制定统一的药品分类、库存管理和服务流程标准,确保各连锁药店的运营一致性和规范性。 通过智能数据分析,监测各门店对标准的执行情况,及时发现并纠正偏差。 应用赋能方面: 借助人工智能的图像识别技术,实现药品的快速准确盘点和库存监控。 利用智能客服系统,为顾客提供 24 小时不间断的咨询服务,提高服务效率和质量。 运营定位方面: 基于大数据和人工智能算法,分析不同地区、不同消费群体的需求特点,为各连锁药店精准定位目标市场和商品品类。 运用智能营销工具,实现个性化的促销活动推送,提高营销效果和顾客满意度。 迭代提升方面: 利用人工智能收集和分析顾客反馈、市场变化等数据,持续优化运营策略和服务模式。 建立基于人工智能的预测模型,提前洞察市场趋势和顾客需求变化,为连锁药店的发展提供前瞻性指导。 希望以上内容对您有所帮助,您可以根据实际情况进一步细化和完善。
2024-12-24
现在在国内有想要做这个AI方面的这个创业,我能做一些什么呢?
在国内进行 AI 方面的创业,以下是一些建议: 1. 数据处理方面: 认识到高质量数据处理服务的稀缺性,数据质量对于模型效果至关重要。 避免单纯依赖开源数据,谨慎考虑购买优质数据的投入风险。 2. 模型选择方面: 训练底层世界大模型需要巨大投入,除大厂外对其他公司较困难。 大多数国内公司往往先推出产品,而非集中精力专攻大模型。 3. 创业方向方面: 可以选择“唯快不破”的策略,尽量低成本、高速度地在小赛道中尝试。 例如辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如商品推荐、行程规划等)、监控与预警(如健康监测、安全监控等)、优化与管理(如办公自动化、物流优化等)、销售与交易(如艺术作品生成与销售平台等)等细分领域。 需要注意的是,在这轮 AI 大潮中,新技术加速迭代是常态,不能期望在“技术稳定”时再出手。
2024-12-20
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18