以下是为您提供的关于 prompt 的相关信息:
星流一站式 AI 设计工具:
Claude 工程师的观点:
AI Agent 产品经理的经历:
prompt输入框中你可以输入提示词、使用图生图功能辅助创作。[heading4]提示词[content]1.什么是提示词?1.1.内容1.1.1.提示词用于你想描绘的画面。1.2.输入语言1.2.1.星流通用大模型与基础模型F.1、基础模型XL使用自然语言(一个长头发的金发女孩),基础模型1.5使用单个词组(女孩、金发、长头发),1.2.2.支持中英文输入。1.3.提示词优化1.3.1.启用提示词优化后,帮你扩展提示词,更生动的描述画面内容。2.如何写好提示词?2.1.预设词组2.1.1.小白用户可以点击提示词上方官方预设词组,进行生图2.1.提示词内容准确2.1.1.包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。2.2.调整负面提示词2.2.1.点击提示框下方的齿轮按钮,弹出负面提示词框2.2.2.负面提示词可以帮助AI理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印2.3.利用“加权重”功能,让AI明白重点内容2.3.1.可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。2.3.1.对已有的提示词权重进行编辑2.4.辅助功能2.4.1.翻译功能:一键将提示词翻译成英文2.4.2.删除所有提示词:清空提示词框2.4.3.会员加速:加速图像生图速度,提升效率
Alex Albert:你们有没有什么写提示词的小技巧?分享一下。Zack Witten:阅读你写的提示词,阅读模型给的输出。然后就是多看别人写的优秀提示,多和模型沟通、尝试不同的提示词。Alex Albert:你怎么知道它就是一个好提示呢?你只是看到输出的结果正确吗?Zack Witten:是的。Amanda Askell:把你的提示给另一个人看可能会有帮助,尤其是那些对你的工作一无所知的人,这会很有帮助。然后也是:多看、多做。这很有帮助。David Hershey:我觉得要尝试让模型做一些你认为自己做不到的事情。最能让我学到提示技巧的,往往是在探索模型能力的极限时。比如说,写一封好邮件,看似简单,但实际上这过程中有很多细节需要考虑。如果你能找到一些挑战模型能力的任务,并尝试解决它们,你会发现自己学到了很多。真正的提示工程不仅仅是解决简单的任务,而是要推动模型能力的边界。即使你最终失败了,你也会获得很多关于如何使用模型的宝贵经验。所以,找一些你觉得最难的任务,尝试去完成它们,即使失败,也会从中学到很多。Alex Albert:这实际上是个很好的过渡。我的下一个问题正好围绕着这个主题。我最早了解提示工程的方式,主要是通过越狱和红队测试。这就像是试图找出模型的能力边界,了解它如何对不同措辞和用词做出反应,以及大量的试错。在讨论越狱时,模型内部到底发生了什么?Amanda Askell:我实际上也不太确定。很多人都在研究越狱背后的机制,比如说模型可能会遇到训练数据之外的输入分布。比如,当你越狱时使用很多token的长文本,这可能是在微调期间不常见的情况,这样可能会影响模型的表现。不过,我认为这是其中之一,但也有其他因素可能会影响模型。
当我第一次知道ChatGPT的时候,我刚好在解一个难题:用户输入的数据其实是千奇百怪的,没有什麽固定规则,可能这样:“白苏,男,才华横溢,电话18856888898,家住XXXXXXXXX”也可能直接就是一坨文本,我曾尝试了很多种解法,都挺难。最后写了一大段正则。后来我知道了GPT,再然后,我的道心就崩了。毕竟一个prompt就抹掉了我个把月的努力。更让我崩溃的是,我发现,这个输出,直接可以作为我系统中上传候选人的入参,这不就,自动化了么????上传候选人接口(API)如下:这个事情我可以描述地再具体一点:很多人应该都用过寄快递的软件,输入地址的时候,复制一坨文本进去,它能自动帮你填好。如果识别不出来,你就得一个一个空地去填写。通过大模型自动化之后,我只需要给一个文本框,你输入一坨文本进来,我自动给你提交。那个时候还是22年底,没有Function Calling更没有Tools,Sam也还没有给大家演示ChatGPT帮你点外卖。