Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

GPT4最新进展

Answer

GPT-4是OpenAI开发的大型多模态语言模型,它能够接受图像和文本输入,并产生文本输出。以下是GPT-4的一些最新进展:

  1. GPT-4 Turbo的发布:OpenAI推出了GPT-4 Turbo的预览版,这是一个更强大的模型,它了解截至2023年4月的世界事件。GPT-4 Turbo具有128K的上下文窗口,可以处理相当于300多页文本的输入。相比于GPT-4,GPT-4 Turbo在性能上进行了优化,提供了更低的价格,输入token价格降低了3倍,输出token价格降低了2倍。

  2. 功能和性能提升:GPT-4 Turbo支持多模态API调用,包括视觉功能和DALL·E 3 API。它还在指令跟随和JSON模式方面进行了改进,提供了更高的准确性和更有效的JSON格式输出。

  3. 可重复输出和对数概率:GPT-4 Turbo引入了新的seed参数,允许模型返回大部分时间一致的完成,这对于调试请求和编写单元测试非常有用。OpenAI还计划推出一个功能,返回最可能输出的令牌的对数概率,这将对构建搜索体验中的自动完成等功能非常有用。

  4. GPT-3.5 Turbo更新:除了GPT-4 Turbo之外,OpenAI还发布了GPT-3.5 Turbo的新版本,支持16K的上下文窗口,并改进了指令跟随、JSON模式和并行函数调用。

  5. 助手API和新模态:OpenAI发布了助手API,允许开发者在自己的应用程序中构建Agent类体验。GPT-4 Turbo可以通过Chat Completions API接受图像输入,实现生成标题、详细分析现实世界的图像以及阅读带有图表的文档等功能。

  6. 技术报告:OpenAI发布了GPT-4的技术报告,详细介绍了模型的开发、性能、能力和局限性。GPT-4在多项专业和学术基准测试中展现出人类水平的表现,包括通过模拟律师资格考试并在SAT考试中取得高分。

  7. 安全性和可靠性:尽管GPT-4在性能上取得了显著进步,但它仍然存在一些局限性,例如可能产生不准确的信息(俗称“幻觉”)和有限的上下文窗口。OpenAI在模型开发过程中注重安全性,以减少潜在的风险。

  8. 企业级服务:Azure OpenAI服务发布了企业级可用的GPT-4国际预览版,允许企业构建自己的应用程序,并利用生成式AI技术提高效率。

  9. 价格降低和速率限制提高:OpenAI降低了API价格,以将节省的费用传递给开发者,并提高了每分钟的令牌限制,以帮助开发者扩展应用程序。

  10. 版权保护:OpenAI推出了版权保护措施,如果客户面临版权侵权的法律索赔,OpenAI将介入保护客户并支付相关费用。

这些进展显示了GPT-4在多模态能力、性能优化、安全性和企业级应用方面的持续发展和创新。随着GPT-4的不断改进和新功能的推出,它在自然语言处理领域的应用潜力将进一步扩大。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
怎么注册gpt4
以下是注册 GPT4 的详细步骤: 苹果系统安装、订阅 GPT4 教程 一、注册一个苹果的美区 ID 1. 电脑上打开 Apple ID 的注册页面:[https://appleid.apple.com/ac 2. 填写验证码后点继续 3. 到您的谷歌邮箱接收邮箱验证码 4. 接着验证手机号码 5. 验证完后会出现相关页面,此时美区 ID 已注册但未激活,切换到手机操作 6. 打开 App Store,点击右上角的人形头像 7. 拉到最底下,点击退出登录,先退出国内的 ID 8. 之后再点击右上角的人形头像 9. 正常设置里会登录国内的 ID,这里选择否,手动输入美区 ID 10. 接着会收到短信进行双重验证 11. 之后完成美区的 ID 登录 12. 随便找个软件下载 13. 此时会弹出提示,因为是新注册的 ID,需要点击“检查”进行激活 14. 点击同意,进入下一页填写美国地址 15. 最关键的一步:付款方式中没有选项“无”或者“none”时,只需要输入街道地址和电话 16. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,就可以用这个美区 ID 下载例如小火箭(科学上网必备)、ChatGPT、Discord、X、TikTok 等等 二、注册 ChatGPT 账号 1. 访问官方网站:打开浏览器,输入。如有账号直接登录,没有的话点击“注册” 2. 继续使用 Google 登录 3. 跳转到 OpenAl 的网页,然后会跳转到 OpenAl 的网页,填写您的名字跟出生日期 4. 点击“好的,开始吧”进入 chatgpt 主页面,可以免费使用 chatgpt3.5 了 使用 ChatGPT 4 建议需要注册的账号 1. 苹果用户:ChatGPT 账号、美区 AppleID、谷歌账号 2. 安卓用户:ChatGPT 账号、下载 GooglePlay、谷歌账号 注册谷歌账号 1. 访问注册页面:打开浏览器,输入进入谷歌账号注册页面 2. 填写个人信息:在注册页面,按照提示填写个人信息,包括姓名、用户名、密码(年龄最好大于 18 岁) 3. 填写邮箱账号:可以选择推荐前缀或者创新的邮箱地址 4. 设置密码 5. 验证电话号码:有一定概率跳到接收短信验证,这里填国内的号码就可以。有时不用验证手机号码 6. 填写辅助邮箱 7. 确认账户信息,同意服务条款和隐私政策:阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册 8. 完成注册:可在“Personal info”里设置语言、头像等信息 注:使用以上软件需要会科学上网,不会的可以私信我。
2025-01-06
gpt4 可以免费了吗
GPT4 并非完全免费。免费用户有一定的对话次数限制,付费 Plus 用户可以批量对话。目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,而 GPT4 若要使用更多功能则需要升级到 PLUS 套餐,收费标准是 20 美金一个月。此外,微软 Copilot iOS 版中 GPT4 可免费使用,功能类似 ChatGPT 和 DALLE 3 图像生成,并提供 Image Creator 功能,可从文本提示创建海报。
2024-12-30
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
你和gpt4有什么区别
以下是关于我和 GPT4 的一些区别: 1. 在数学能力方面,GPT4 可能在比数学数据更多的代码上进行训练。相对于 ChatGPT,GPT4 在许多复杂数学问题中展示出更深入的理解,并能够应用适当的推理,而 ChatGPT 通常采用低级启发式方法,缺乏实际理解。 2. 在处理复杂约束及追问任务时,GPT4 不会像 GPT4o 那样首先主动询问用户的背景信息来判断提问意图。 3. 在局限性方面,GPT4 通常缺乏对 2021 年 9 月后发生事件的了解,不会从经验中学习,有时会犯简单推理错误,过于轻信用户虚假陈述,可能在预测中自信犯错且不注意复查工作。预训练模型高度校准,但后训练过程中校准度降低,其输出存在各种偏差。
2024-12-26
gpt4
以下是关于 GPT4 的相关信息: 技术报告: GPT4 是一个能够处理图像和文本输入并产生文本输出的大型多模态模型。 此类模型是重要研究领域,有潜力用于多种应用,如对话系统、文本摘要和机器翻译,近年来备受关注并取得进展。 开发目标之一是提高理解和生成自然语言文本能力,尤其在复杂细致场景中。 GPT4 在为人类设计的考试中表现出色,如在模拟律师考试中分数位列前 10%,与 GPT3.5 形成鲜明对比。 在传统 NLP 基准测试中,超过以前大型语言模型和大多数先进系统,在 MMLU 基准测试中,不仅在英语中优势明显,在其他语言中也表现强大。 报告还讨论了项目关键挑战,即开发在各种规模下表现可预测的深度学习基础设施和优化方法。 GPT4 有类似早期 GPT 模型的局限性,如不完全可靠、上下文窗口有限、不从经验学习,使用其输出结果需谨慎。 能力测试: 在一系列不同基准上进行测试,包括模拟为人类设计的考试。 考试中的少数问题是模型在训练中看到的,会运行去除这些问题的变体,并报告较低分数,相信结果有代表性。 考试来源为公开材料,包括选择题和自由回答题,为每种形式设计单独提示,在需要输入的问题中加入图像。 评估设置根据考试验证集成绩设计,报告的最终结果基于预留测试考试,总分通过结合选择题和自由回答题分数确定,并报告应试者百分数。 对于 AMC 10 和 AMC 12 2022 年考试,人类百分位数未公布,报告数字是推断的,可能有不确定性。 常见问题解答: 所用模型为 GPT4。 若 GPT4 总结内容质量不行,可点击“重试”按钮让其重新总结。 无法让 GPT 输出排版内容时直接不输出“”,强制不输出会导致总结内容效果大幅下降。 前面提到的剪切板共享工具是微信输入法。
2024-12-25
我想用gpt4写实习契约,想让它写的有水平一些,该怎么办
以下是一些利用 GPT4 写有水平实习契约的建议: 1. 先确定实习契约的大纲目录,可以参考老师提供的示例或相关模板,也可以用手机识别截图获取。 2. 明确整体的语言风格和特色,比如要求逻辑清晰、层层递进、条理分明。您可以把范文提供给类似 Claude 2 的工具,让其总结语言风格。 3. 详细描述实习契约的各项条款,包括实习的时间、地点、职责、报酬、保密条款等。 4. 注意语言表达的准确性和规范性,避免模糊不清或产生歧义的表述。 需要注意的是,GPT4 有时会产生语法无效或语义不正确的内容,您需要仔细检查和修改。
2024-11-22
AI方面有什么最新进展
以下是 AI 方面的一些最新进展: 1. 2024 人工智能现状报告:由剑桥大学和 AI 风险投资公司 Air Street Capital 的相关人员共同发表,围绕人工智能领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。 2. AI 绘画:从生成艺术作品到辅助艺术创作,逐渐改变传统艺术面貌。技术进步使创作质量和速度取得突破,为艺术家提供新工具和可能性,但也引发了关于艺术本质、创造性、版权和伦理的讨论,带来对从业者职业安全的焦虑和“侵权”嫌疑的反对之声。 3. 技术历史和发展方向: 发展历程:包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络等。 前沿技术点:大模型(如 GPT、PaLM 等)、多模态 AI(视觉语言模型、多模态融合)、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速。
2024-12-05
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
Ai最新进展
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包含自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,包括强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,绿洲资本张津剑认为 AI 技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但 AI 的实际进展非常迅速。
2024-09-03
LLM写ABAP代码的最新进展
大型语言模型(LLM)在编写ABAP代码方面的能力正在不断提升。ABAP(高级业务应用编程)是SAP系统的编程语言,专门用于开发企业资源规划(ERP)软件。以下是一些LLM编写ABAP代码的最新进展: 1. 代码生成:LLM可以基于自然语言描述生成ABAP代码片段,帮助开发者快速实现特定功能。 2. 代码补全:通过机器学习技术,LLM能够预测并补全ABAP代码,提高开发效率。 3. 代码审查:LLM可以分析ABAP代码,识别潜在的错误和不规范的编程实践。 4. 文档生成:LLM能够根据ABAP代码自动生成文档,包括函数描述、参数说明等。 5. 模式识别:LLM可以识别ABAP编程中的常见模式和最佳实践,并在代码生成时应用这些模式。 6. 交互式学习:一些LLM提供交互式学习环境,帮助开发者通过实例学习ABAP编程。 7. 集成开发环境(IDE)插件:LLM技术被集成到ABAP开发工具中,提供智能代码提示和错误检测。 8. 自动化测试:LLM可以生成测试用例,帮助自动化ABAP代码的测试过程。 9. 性能优化:LLM可以分析ABAP代码的性能瓶颈,并提出优化建议。 10. 跨语言能力:一些LLM能够理解多种编程语言的概念,并将其应用于ABAP代码的编写。 然而,尽管LLM在编写ABAP代码方面取得了进展,但它们仍然面临一些挑战,例如: 领域特定知识:ABAP是一种领域特定的语言,需要对SAP系统有深入的理解。 复杂逻辑处理:企业级应用的逻辑可能非常复杂,LLM需要能够处理这些复杂性。 代码维护性:自动生成的代码需要易于理解和维护。 随着技术的发展,LLM在ABAP编程领域的应用将越来越广泛,但它们可能仍然需要与人类开发者合作,以确保生成的代码既高效又可靠。
2024-08-05