Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

表格大模型的使用

Answer

以下是关于表格大模型使用的相关内容:

使用 coze 做智能报表助手: 用户上传 excel 后,在工作流中获取 excel 连接,通过插件下载并读取数据。最初打算将解析的 excel 数据以单元格形式存到 bot 数据库,用大模型根据数据和用户提问生成答案,但大模型计算能力差,常出错。后改为将 excel 转换为数据表,用大模型把用户问题转换为 sql,准确率高。自己写服务动态创建表并存表名到 coze 数据库,根据表名动态执行 sql 拿数据。再用大模型为用户生成 3 个推荐报表,限制数据 100 条。拿到 sql 后执行查询,用大模型转换为绘制 echarts 图表的参数,自行编写插件提高图表清晰度。

SDXL 大模型: SDXL 的大模型分为两部分,base+refiner 是必须下载的,base 用于文生图操作,refiner 用于细化生成的模型以获得更丰富的细节,还有配套的 VAE 模型用于调节图片效果和色彩。模型可在云盘获取,在 webUI 中使用需将版本升级到 1.5 以上,放入对应文件夹。先在文生图中用 base 模型生成,再将图片发送到图生图中用 refiner 模型重绘。

通过 Open WebUI 使用大模型: Open WebUI 是大模型的交互客户端,是 github 上的开源项目,参考官方文档下载安装。安装前需先安装 Docker,不同系统安装方式不同。安装 Open WebUI 有两种方式,已安装 ollama 时只需安装 open webui 即可。安装完成后即可使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

使用coze做一个智能报表助手

用户上传excel后,在工作流中可以拿到excel连接,然后写一个插件通过url下载当前excel,再读取excel里的数据。开始我打算把解析出来的excel数据以单元格的形式存到bot数据库,然后使用大模型根据单元格数据和用户提问生成答案,但是经过多次实验,发现大模型的计算能力特别差,经常出现计算错的情况。比如一张学生成绩表,用户想求某个学科的平均数,大模型可以把当前学科所有分数精准的提取出来,最后一步计算的时候,经常会出现错误。然后就试了一下另外一套方案,把excel转换为数据表,然后使用大模型把用户问题转换为sql,发现这样做生成的sql准确率非常高,基本都能得到想要的结果。coze里不能动态创建表,所以我自己写了一个服务,在动作流里调用这个服务,根据excel的url动态创建表,同时把excel数据插入到表中,最后把服务返回的动态表名存到coze数据库中,这一步是为了后续用户提问问题时,根据表名动态执行sql,拿到数据。最后再根据数据库表字段信息,使用大模型为用户生成3个推荐报表,报表信息中包含标题、描述、查询sql。这里防止一次查询出来的数据过多,传给大模型时候崩溃,所以限制数据100条。拿到sql后,使用插件动态执行sql查询数据,再根据标题和数据使用大模型转换为绘制echarts图表的参数。绘制图表,官方有一个插件,但是这个插件生成的图表图表有点模糊,我自己就写了一个插件,生成的图表图片就清晰度比较高,echarts绘制图表时可以设置缩放,我给图片放大了三倍,清晰度就变高了很多。

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

手把手教你本地部署大模型以及搭建个人知识库

在默认的情况下,我们需要在终端中跟大模型进行交互,但是这种方法太古老了。我们基本不会使用终端命令跟Mysql打交道,而是使用Navcat等客户端和Mysql进行交互。大模型也有其交互客户端,这就是Open WebUI[heading2]安装Open WebUI[content][Open WebUI](https://github.com/open-webui/open-webui?tab=readme-ov-file)是github上的一个开源项目,这里我们参考其[官方文档](https://docs.openwebui.com/getting-started/)进行下载和安装。1.在安装之前,我们需要先安装Docker,安装说明如下:如果是Win或者Mac系统,参考文档:[Docker Desktop release notes](https://docs.docker.com/desktop/release-notes/#4200):注意:要下载跟自己的电脑系统适配的版本例如目前的最新版本的Docker仅支持Mac OS12.0以后的系统如果Linux系统,请自己上网找教程(日常都可以使用Linux系统了,安装Docker小Case!)1.在官方文档中我们会看到两种安装Open WebUI的方式:ollama和open webui一起安装仅仅安装open webui由于我们已经安装了ollama,因此我们只需要安装open webui即可,复制如下命令:当Open WebUI安装下载完成之后,我们就可以愉快的玩耍啦!

Others are asking
有哪些资源可以通过excel表格或者对话生成思维导图
以下是关于通过 Excel 表格或对话生成思维导图的资源介绍: 过去,ChatGPT 无法直接生成思维导图,面对复杂代码或长篇文章,需利用 AI 提炼后再用思维导图软件转换,较为繁琐。 如今有了 GPTs,可通过 Actions 调取第三方平台(如 Gapier)提供的 API 直接获取内容对应的思维导图。 具体案例包括: 1. 在 Action 中引入 Gapier 生成代码的思维导图。 2. 在 Action 中引入 Gapier 和 Webpilot 生成在线文档的思维导图。
2025-03-06
处理excel表格的AI
以下是一些处理 Excel 表格的 AI 工具和相关信息: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。 此外,对于 Excel 与飞书多维表格的比较: Excel 有手就会,但 VBA 进阶版功能门槛高。 对于一些重复工作,AI 能处理 Excel 但较麻烦,而飞书多维表格在某些数据处理功能上能让人偷懒解决。 常见应用场景包括数据整理与分析、内容生成与优化、自动化建议等,两者都能帮助整理数据、做计算、做图表等,但多维表格在某些方面更便捷。
2025-03-06
飞书多维表格生图
飞书多维表格的相关生图功能如下: 生图入口 1:网页顶部的右方有生图按钮,点击进入生图界面。 生图入口 2:点进首页任意一个模型(checkpoint 或 lora),有运行按钮。 生图入口 3:点进任意一个模型下面的返图区(相关帖子),点开一张您喜欢的图片,右侧有做同款的按钮。点开之后可以选择自动复制他所有的设置,尝试复现他的图,体验他的设置效果。但需注意,这个生图是直接复现大佬操作,不一定能复现大佬的图,不过大概率能出与大佬同水平同要素的图。 此外,基于飞书多维表格还有以下相关内容: 输入观点一键生成文案短视频:基于其它博主开源的视频生成工作流做了功能优化,实现视频全自动创建。通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。大体路径为通过 coze 创建智能体及工作流,使用 DeepSeek R1 根据用户观点创建文案再创建视频,发布 coze 智能体到飞书多维表格,在多维表格中使用字段捷径引用该智能体,在多维表格中创建自动化流程推送消息给指定飞书用户。 AI 编程与炼金术:Build on Trae 中,核心逻辑是用 Trae 开发一个浏览器插件,通过上一节里已经创建的飞书应用,把网页链接直接插入到多维表格内。
2025-03-05
多维表格生图
以下是关于多维表格生图的相关信息: Tusiart 生图入口: 1. 网页顶部的右方有生图按钮,点击进入生图界面。 2. 点进首页任意一个模型(checkpoint 或 lora),有运行按钮。 3. 点进任意一个模型下面的返图区(相关帖子),点开一张喜欢的图片,右侧有做同款的按钮。点开之后可以选择自动复制所有设置,尝试复现图片,体验设置效果。 Liblibai 生图入口: 1. 网页顶部的右方有生图按钮,点击进入生图界面。 2. 点进模型广场上任意一个模型(checkpoint 或 lora),有立即生图按钮。 3. 点进任意一个模型下面的返图区,点开一张喜欢的图片,右侧有在线生成的按钮。点开之后可以选择自动复制所有设置,尝试复现图片,体验设置效果。 此外,还有输入观点一键生成文案短视频的相关内容: 基于其它博主开源的视频生成工作流进行了功能优化,实现视频全自动创建。通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。大体路径为:通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 Coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。
2025-03-05
AI修改多维表格
以下是关于 AI 修改多维表格的相关内容: 创建带有 AI 能力的飞书多维表格: 某些字段由 R1 生成可能存在问题,需将其复制到下一个字段。例如,第六个字段“金句输出”,选择公式中的“金句提炼.输出结果”;第七个字段“概要内容提炼”用 DeepSeek R1 提炼,同样打开“获取更多信息”里的“输出结果”,第八个字段会自动出现“概要内容提炼.输出结果”,第九个字段“概要内容输出”用公式复制第八个字段。这样输入第一个链接,后续字段会自动生成,完成 AI 数据库设置。 利用飞书多维表格字段捷径配置 COZE 的 BOT 青青: 在“谁是人类”活动中创建拟人化 bot 青青,人设为可爱有趣、擅长回答刁钻问题。 发布时配置飞书多维表格,输出为文本,配置多维表格输入表单,选择控件的字段选择器,给字段标题起名“question”,可选择全量发布或仅自己可用,审核通过即发布成功。 飞书多维表格的特点和应用: 多维表格是人人爱用的工具,能将奇思妙想快速变成实际可用产品。 当 AI 与多维表格结合,带来多样可能性,涌现大量智能业务系统,任何人都能搭建,人人都可以是 AI 产品经理。 2024 年 10 月 26 日将在上海字节跳动工区举办多维表格 AI Maker Day,规模 200 人,时间为下午 13:00 18:00,嘉宾包括飞书产品团队、“通往 AGI 之路”社区、科技行业博主,议程暂定。
2025-03-05
deepseek使用表格的教程
以下是关于字节火山 DeepSeek 使用表格的教程: 1. 多种使用方法和途径: 飞书多维表格: 宝藏飞书多维表格模板: 全面解读: 营销类: 投资和电商: 工具论文效率类: 有趣类: 2. API 使用方式:包括飞书多维表格调用、Coze 智能体调用、浏览器插件调用。 3. 优惠活动: 邀请可拿 3000 万 tokens。 即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠,包括 DeepSeekR1、V3 模型提供 50 万免费额度和 API 半价活动。 4. 操作指引: 点击邀请。 复制邀请链接。 复制链接/邀请码 D3H5G9QA 或下载邀请海报分享给好友。 您可以通过上述内容获取关于字节火山 DeepSeek 使用表格的详细信息。
2025-03-05
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
你用的大模型是?
我所使用的大模型相关信息未明确告知。但为您介绍一下大模型的相关知识: 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”“推理问答”“对话”“文档摘要”等工作。 大模型的训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”“cat”“sat”等的同时,会生成相应的词汇表。
2025-03-06
yolov 和resnet咋做成大模型?
要将 YOLOv 和 ResNet 做成大模型,需要考虑以下几个方面: 1. 数据准备:收集大量的相关数据,并进行清洗、预处理和标注,以满足模型训练的需求。 2. 模型架构调整:根据具体任务和数据特点,对 YOLOv 和 ResNet 的架构进行适当的修改和优化,例如增加层数、调整通道数等。 3. 训练策略:选择合适的优化算法、学习率调整策略等,以提高训练效果和收敛速度。 4. 计算资源:大模型的训练需要强大的计算资源,包括硬件设施和云计算平台等。 此外,从相关的研究和趋势来看,大模型架构呈现出日益明显的混合趋势,多种有代表性的技术路径在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展。例如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。但需要注意的是,将 YOLOv 和 ResNet 做成大模型是一个复杂的过程,需要深入的研究和实践。
2025-03-06
大模型调优
大模型调优的方法主要包括以下几个方面: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将默认的 embedding 模型如 LangChain Chatchat 的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,重命名文件对结果提升不明显,但勾选该选项后回答的无关信息减少,效果有所提升。 从产品视角考虑大模型调优,主要从以下两个维度分析问题: 1. Context optimization(上下文优化):所创建的 LLM 应用若需要特定数据、系统和流程等预训练 LLM 中缺失的知识和信息,需进行上下文优化,如企业内部智能问答机器人,应将相关知识提供给大模型,RAG 是解决该问题的技术。 2. LLM optimization(大模型优化):在进行足够的 prompt 工程后,若 LLM 应用在垂直领域表现仍不足或希望输出特定格式风格等稳定性不及预期,可考虑微调,且需与良好的 prompt 工程结合。 大模型的安全保障可通过对齐,也叫指令调优实现,包括监督微调、获取 reward model 与进行强化学习调整输出分布。但即使如 GPT4 和 Claude 等模型已几乎不回复危险问题,Alignment 仍不足以防护所有安全问题,存在越狱现象。LLAMA2 专门使用安全有监督微调确保语言模型安全。强化学习能让模型根据人类反馈调整分布,面对训练分布外数据也可能学会拒绝不当回答。
2025-03-06
manus的工具调用使用到的具体技术有哪些
Manus 工具调用使用的具体技术包括: 1. 基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中,通过规划、执行和验证三个子模块的分工协作来处理复杂任务。 2. 核心功能由多个专注于不同任务或领域(如自然语言处理、数据分析、推理等)的独立模型共同完成,这种多模型驱动的设计提高了系统的鲁棒性和准确性,增强了处理复杂任务的能力。 3. 技术架构包含关键组件: 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 生成物:能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 4. 采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使处理复杂任务更高效和准确。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有适用于让 Cursor 生成您所需 Android 应用的特定提示词。编写这样一个复杂的 Android 应用需要对 Android 开发、网络通信、音频处理和语音识别等多个领域有深入的了解和专业知识。您可能需要逐步向 Cursor 描述应用的架构、各个模块的功能和实现逻辑,例如先描述如何建立与 ESP32 的 WebSocket 连接,如何接收和处理 Opus 数据,如何进行数据转换以及如何调用 Sherpaonnx 进行语音识别等。但需要注意的是,仅仅依靠提示词让 Cursor 生成完整可用的复杂应用可能具有一定的局限性,建议您在具备相关基础知识的前提下,结合 Cursor 的辅助来逐步完成开发。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有关于使用 Cursor 生成您所需的这种特定 Android 应用的提示词的相关内容。一般来说,您可以向 Cursor 提供以下关键信息作为提示词的参考: 1. 明确应用的功能需求,如“编写一个在 Android Studio 中编译的 Android 应用,用于接收 ESP32 通过 WebSocket 协议发送的 Opus 数据,保存 Opus 并转换为 WAV 格式,然后使用 Sherpaonnx 进行语音识别成文字。” 2. 描述应用的技术架构和关键技术点,例如“应用需基于 Android 平台,使用合适的网络库处理 WebSocket 连接,采用有效的数据存储方式保存 Opus 数据,利用特定的音频转换库将 Opus 转换为 WAV,以及集成 Sherpaonnx 语音识别库实现文字转换。” 3. 提及开发环境和工具要求,比如“在 Android Studio 开发环境中,遵循 Android 应用开发规范和最佳实践。” 但需要注意的是,Cursor 生成的代码可能并不完全满足您的需求,还需要您进行进一步的修改和完善。
2025-03-06
教我如何使用剪辑视频ai
以下是使用剪辑视频 AI 的方法: 1. 准备视频内容: 先准备一段视频中播放的内容文字,内容可以是产品介绍、课程讲解、游戏攻略等。也可以利用 AI 生成这段文字。 2. 制作视频: 使用剪映 App 进行简单处理。电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。 在界面右侧将准备好的文字内容替换默认文本内容,这将为数字人提供语音播放的内容以及生成相对应的口型。 3. 视频转绘处理(使用 Topaz Video AI 插件): 解压对应文件,推荐使用绿色版。右键管理员运行 VideoAIportable.exe 文件。 导入处理好的视频,查看主界面,左边是原视频,右边是待处理视频,下面是对应的视频轨道。 右边部分是对视频处理的方式,预设部分包括放大视频、提升画质、提升帧率等。稳定 AI 模式选择完整帧,强度在 60 左右,抖动开启,次数选择 2 保持默认不变。 4. 配音处理: 把鼠标移动到每个视频片段的右下角的蓝色“+”号,点击或拖拽将片段添加到剪映编辑器的轨道里。 点击剪映电脑版最上面的菜单栏“音频”。 音频导入包括直接导入音频文件(如 MP3 格式),支持视频转音频,还可以通过复制抖音视频的分享链接来获取音乐。
2025-03-06
教我如何使用DeepSeek
以下是关于如何使用 DeepSeek 的详细介绍: 1. 在网页端使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白之后,正式开始对话。 2. 获取字节火山 DeepSeek 系列 API 的使用方法: 可以先用邀请码:D3H5G9QA。 邀请链接:https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 。 操作指引:点击邀请,复制邀请链接,复制链接/邀请码 D3H5G9QA 或下载邀请海报分享给好友即可。 3. 在阿里云使用百炼满血版 DeepSeek: 阿里云百炼地址:https://bailian.console.aliyun.com/ 。 开通满血版 R1 模型:在模型广场找到 DeepSeekR1 并授权,页面上可看到免费的 100 万额度和已使用量,每人免费送 100 万额度,过期则亏。用完还有免费的蒸馏版的 R1 模型,也是 100 万 token。这些模型可在“首页”或者“直接体验”直接使用,也可通过 API 调用,如 chatbox 直接使用。 百炼应用开发:新增加了模板,可从模板学习应用搭建。 联网搜索:像知识库检索一样进行联网搜索,简单方便,直接配置即可用。结合 Deepseekr1 会更强大,搜索天气时会多方验证。 新鲜的动态 few shot:小技巧,可用于模型对于某些做不好、容易出幻觉的任务,通过 prompt training 进行强行修正。 工作流:用工作流让不同模型在同一任务创作。
2025-03-06
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06