Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

manus的工具调用使用到的具体技术有哪些

Answer

Manus 工具调用使用的具体技术包括:

  1. 基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中,通过规划、执行和验证三个子模块的分工协作来处理复杂任务。
  2. 核心功能由多个专注于不同任务或领域(如自然语言处理、数据分析、推理等)的独立模型共同完成,这种多模型驱动的设计提高了系统的鲁棒性和准确性,增强了处理复杂任务的能力。
  3. 技术架构包含关键组件:
    • 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。
    • 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。
    • 生成物:能够生成各种类型的输出,如文本、表格、报告等。
    • 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。
  4. 采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使处理复杂任务更高效和准确。
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:Manus

Manus是一款由中国团队研发的全球首款通用型AI代理工具,于2025年3月5正式发布。它区别于传统聊天机器人(如ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的AI”。[heading1]Manus AI代理工具的具体技术架构是什么?[content]Manus AI代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。[heading2]Manus AI的技术架构还包括以下几个关键组件:[content]1.虚拟机:Manus AI运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。2.计算资源:Manus AI利用计算资源生成算法,用于筛选简历等具体任务。3.生成物:Manus AI能够生成各种类型的输出,如文本、表格、报告等。4.内置多个agents:Manus AI通过内置多个智能体,实现了任务的分解和协同工作。此外,Manus AI还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现AI的能力。这种设计使得Manus AI在处理复杂任务时更加高效和准确。Manus AI的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。

详解:Manus

Manus是一款由中国团队研发的全球首款通用型AI代理工具,于2025年3月5正式发布。它区别于传统聊天机器人(如ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的AI”。[heading1]Manus AI代理工具的具体技术架构是什么?[content]Manus AI代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。[heading2]Manus AI的技术架构还包括以下几个关键组件:[content]1.虚拟机:Manus AI运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。2.计算资源:Manus AI利用计算资源生成算法,用于筛选简历等具体任务。3.生成物:Manus AI能够生成各种类型的输出,如文本、表格、报告等。4.内置多个agents:Manus AI通过内置多个智能体,实现了任务的分解和协同工作。此外,Manus AI还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现AI的能力。这种设计使得Manus AI在处理复杂任务时更加高效和准确。Manus AI的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

最后,笔者ailm讲解一下实现人设稳定的具体原理:通过提示词工程与工具调用能力的配合,设计出一套与知识图谱相结合的工具调用逻辑,从而稳定人设。通过缩小max_length防止LLM长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。所需要的提示词和工具设计如下:[heading2]1、提示词工程[content]麦洛薇提示词设计如下:[heading2]2、工具设计[content]工具调用方面,通过将与知识图谱交互这一大的任务,细分为:查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表多个工具,组成一个工具包供LLM调用。由于对LLM的多工具调用能力有极高的要求,笔者ailm在参数较少的本地模型(如8B、14B)上并不能完美的运行知识图谱RAG。[heading1]写到最后[content]1.如果你使用comfyui LLM party时出现错误,或你有一些新的想法,欢迎加QQ群:9310572132.github项目地址:3.视频教程:

Others are asking
manus值得关注技术创新有哪些
Manus 值得关注的技术创新包括以下方面: 虚拟机技术:如 VMware 的诞生、x86 虚拟化的挑战与解决方案、服务器虚拟化的兴起(如 VMware ESX/ESXi)、硬件辅助虚拟化(Intel VTx 和 AMDV)、开源虚拟化的崛起(如 Xen 和 KVM)、虚拟化管理平台的发展、虚拟化技术在企业 IT 中的应用、虚拟化与云计算的融合,以及从虚拟机到容器技术演进的下一步等。 容器技术:重点介绍了 Linux 容器技术和 Docker,以及现代容器生态系统,包括云原生技术和最新发展。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。其具体技术架构主要基于多智能体架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。核心功能由多个独立模型共同完成,分别专注于不同任务或领域,如自然语言处理、数据分析、推理等。技术架构还包括以下关键组件: 1. 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。 2. 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 此外,Manus 还采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使其在处理复杂任务时更加高效和准确。
2025-03-06
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
有manus ai的信息吗
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。 以下是一些关于 Manus 的媒体报道: 央视网: 每日经济新闻: 大聪明: 大聪明: Geeksavvy: 卡兹克: 小互 AI: 沐然云计算:
2025-03-06
介绍一下manus
Manus 是由 Monica 团队发布的真正自主的 AI 代理,具有以下核心亮点: 1. 自主执行:能够直接执行任务,而非仅提供建议。 2. 类人工作模式:可以解压文件、浏览网页、阅读文档、提取关键信息。 3. 云端异步运行:在后台执行任务,完成后自动通知用户。 4. 持续学习与记忆:能从用户反馈中学习,提高未来任务的准确性。 5. “心智与手”理念:象征着 AI 实际执行能力。 其任务示例包括但不限于自动分析和执行任务,并直接交付最终结果。您可以通过以下链接查看演示视频和详细介绍:
2025-03-06
调用api是什么
调用 API(Application Programming Interface,应用程序编程接口)是指软件系统之间进行交互和通信的一种方式。通过调用 API,一个程序可以请求并获取另一个程序或服务所提供的数据、功能或执行特定的操作。 API 通常定义了一组规则、协议和方法,包括请求的格式、参数的传递方式、响应的数据结构等。开发人员可以使用特定的编程语言和工具,按照 API 的规定发送请求,并处理返回的响应结果,以实现不同系统之间的集成和数据共享。 例如,在 Web 开发中,调用第三方提供的 API 可以获取天气信息、地图数据、社交媒体内容等,从而丰富自己的应用功能。在移动应用开发中,也可以调用系统提供的 API 来实现诸如访问设备传感器、发送短信等功能。 总之,调用 API 是现代软件开发中实现功能扩展和系统集成的重要手段。
2025-03-05
有可以在微信端调用的AI智能体吗?
目前有以下几种在微信端调用 AI 智能体的方式: 1. 通过 chatgptonwechat(简称 CoW)项目: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 点击“Docker”中的“项目模板”中的“添加”按钮,按照相关步骤进行操作。 项目模板代码示例如下:将编译好的内容复制进来。 在容器中创建容器,选择容器编排,填入模板和名称,确定。 点击容器后,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新查看是否成功,若看到“WeChat login success”,则接入成功。 2. 智普工作流: 新用户有 1 元及 5 元的资源包可供购买。 工作流具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用了多个 agent。 在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 接入微信时,准备了云服务器和本地电脑两种版本,可按需选择。 需要注意的是,不同的方式可能存在一定的技术门槛和配置要求。
2025-03-04
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
Claude3/grok3/Gemini使用API调用时消耗token的价格是?
Claude 3 的 API 调用价格为:每百万输入 token 0.25 美元,每百万输出 token 1.25 美元。可以处理和分析 400 起最高法院案件或 2500 张图片只需 1 美元。相关链接:https://x.com/imxiaohu/status/1768284259792691366?s=20
2025-02-27
大模型调用tools
目前,绝大多数小型本地开源大语言模型以及部分商用大模型接口通常不支持稳定的 tool calling 功能。现有的解决方案多为微调 LLM,但会浪费大量时间和算力。有一种新的方法,即仅使用提示词工程和精巧的代码设计,就能让 LLM 获得稳定的 tool calling 能力。 通过多个不具备 tool calling 能力的 LLM 进行实验,结果显示所有模型都能成功执行调用工具这一步,并正确输出能被正则表达式抓取的字典。但在使用 python 解释器任务上,ollama 量化版本的 llama38b 和 mistral7b 模型受限于代码生成水平,不能很好地输出正确代码,导致无法稳定完成计算任务。在搜索知识图谱任务上,所有模型都能让工具返回相关知识,但 ollama 量化版本的 qwen27b 和 mistral7b 模型受限于逻辑理解能力,不能稳定理解知识图谱中多个关系边之间的逻辑关系。实验证明提示词工程可让 LLM 获得 tool calling 能力,但能否利用工具返回的信息解决用户问题,仍受 LLM 自身智能水平限制,较大的模型(如 gemma29b)对工具返回结果的利用能力更稳定。 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放的是 sys prompt、memory、user query;Tools 里放的是一些能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆是 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记,进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是更换 system prompt 和 tools。当然,想做深做好肯定还有很多坑需要踩。
2025-02-27
如何调用ai的模型
以下是关于如何调用 AI 模型的相关内容: Liblibai 简易上手教程: 1. 首页 模型广场:发布了其他用户炼成的模型。收藏和运行数较多的模型在首页前排,点击可查看详细信息,将模型加入模型库可用于生图时快速调用。模型详情下方有返图区。 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个 Checkpoint 模型才能开始。注意与 lora 的区别,两者在模型广场混着展示,Checkpoint 必选,lora 可选可不选。 lora:低阶自适应模型,可理解为 Checkpoint 的小插件,对生图的面部、材质、物品等细节有控制作用,可加入模型库。 VAE:编码器,功能类似于滤镜,调整生图饱和度,选择 840000 即可。 CLIP 跳过层:用于生成图片后控制、调整构图变化,一般设为 2,早期不用过多关注。 Prompt 提示词:想要 AI 生成的内容,需学习。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,需学习。 采样方法:决定让 AI 用何种算法生图。 COW 项目: 1. 调用千问系列的模型:可以直接使用 key、选择 model 进行调用,即直接调用某一个大模型。 2. 调用应用能力:阿里云百炼的“应用”服务。当需要更多能力如工作流、搜索等时,调用百炼的“应用”。在百炼平台里的“应用”类似于 Coze 中的“bot”或 ChatGPT 的 GPTs 概念。有两种调用方式: 直接调用模型:对接简单,调试不方便。 调用应用(bot):对接相对麻烦,调试简单,推荐使用。修改和调整 Prompt 时,只需要在“百炼”应用里进行调试。 AI 调用外部工具: AI 本身不会直接调用工具,也不是依赖关键词识别。实际流程为: 1. 程序调用 AI 接口,AI 生成 JSON 结构化数据,告知是否需要工具、使用何种工具及参数。 2. 程序解析 JSON 并调用工具,获取结果后返回 AI。 3. AI 根据工具返回的数据生成最终回答。
2025-02-27
整理几个agi工具网站
以下是为您整理的一些 AGI 工具网站: 在线 TTS 工具: 1. Eleven Labs:https://elevenlabs.io/ 是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,模拟人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 人工智能驱动的文本转语音工具,可将文本转换为音频文件,可在多种平台使用。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 制作网站的 AI 工具: 1. Zyro:https://zyro.com/ 使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 2. 10Web:https://10web.io/ 基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成 AI 驱动 SEO 分析和优化工具。 3. Jimdo Dolphin:https://www.jimdo.com/ 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 4. Site123:https://www.site123.com/ 简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 内容由 AI 大模型生成,请仔细甄别。
2025-03-06
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06
可视化分析的AI软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
以下是一些可以用于生成线性结构、矩阵结构、框架结构、系统结构等可视化分析的 AI 软件工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包含逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-06
可视化分析的软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
目前常见的可视化分析软件工具包括:Tableau、PowerBI、Excel、Google Data Studio、QlikView 等。但具体哪些工具能够生成您所提到的线性结构、矩阵结构、框架结构、系统结构等,可能需要您进一步查阅它们的详细功能介绍和实际使用体验来确定。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
卡片笔记生产AI工具有哪些
以下是一些卡片笔记生产的 AI 工具及相关介绍: 1. 利用 ChatGPT 辅助完成单词卡片制作: 可以生成对应的单词内容,并整理好放入 Excel 文件中。 利用搞定设计批量产图,步骤包括点击右上角三个点、选择批量套版、按照步骤依次点击、保留要替换的部分等。 2. 以 Trae 为代表的自然语言交互式 AI 编程工具:能让程序小白迈出创造的第一步,只要有清晰需求和创意,就能将想法转化为实际产品。 3. 利用 AI 快速总结群聊消息制作笔记卡片: 方法是文字原文+提示词+AI 大模型+小卡片软件。 先将微信聊天内容批量复制,如多选想要复制的内容转发到群里或文件传输助手,收藏并转存为笔记后全选复制。还可使用能让电脑和手机设备剪切板共享的工具。
2025-03-06
我是小白用户,已经建立cherry studio本地知识库,我想更自动化的使用知识库,有什么具体操作方法
以下是关于更自动化使用 cherry studio 本地知识库的具体操作方法: 使用知识库: 将知识库直接与 Bot 进行关联用于响应用户回复,或者在工作流中添加知识库节点,成为工作流中的一环。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。 配置项说明: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。 自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回。 按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传文本内容: |上传方式|操作步骤| ||| |本地文档|1. 在文本格式页签下,选择本地文档,然后单击下一步。<br>2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。<br>目前支持上传.txt,.pdf,.docx 格式的文件内容。<br>每个文件不得大于 20M。<br>一次最多可上传 10 个文件<br>1. 当上传完成后单击下一步。<br>2. 选择内容分段方式:<br>2.1. 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。<br>2.2. 自定义:手动设置分段规则和预处理规则。<br>分段标识符:选择符合实际所需的标识符。<br>分段最大长度:设置每个片段内的字符数上限。<br>文本预处理规则:<br>替换掉连续的空格、换行符和制表符<br>删除所有 URL 和电子邮箱地址<br>1. 单击下一步完成内容上传和分片。| 创建知识库并上传表格数据: |上传方式|操作步骤| ||| |本地文档|选择将本地文件中的表格数据上传至知识库中。<br>1. 在表格格式页签下,选择本地文档,然后单击下一步。<br>2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。<br>目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。<br>每个文件不得大于 20M。<br>一次最多可上传 10 个文件。<br>1. 配置数据表信息后,单击下一步。<br>1.1. 指定数据范围:通过选择数据表、表头、数据起始行指定数据范围。<br>1.2. 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。<br>1.3. 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。<br>2. 查看表结构和数据,确认无误后单击下一步。<br>3. 完成上传后,单击确定。|
2025-03-06
结合API建立本地知识库,具体什么操作比较容易
要结合 API 建立本地知识库,以下是较为容易的操作步骤: 1. 进入知识库页面,单击创建知识库。 2. 在弹出的页面配置知识库名称、描述,并单击确认。需注意一个团队内的知识库名称不可重复,必须是唯一的。 3. 在单元页面,单击新增单元。 4. 在弹出的页面,选择表格格式。 5. 选择 API 上传方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 您也可以选择自定义上传方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。
2025-03-06
怎么可以通过好好利用“waytoagi”生成视频?从文字到图片最后到视频?具体可以用到哪些工具?
以下是关于如何通过“waytoagi”从文字生成视频以及相关工具的介绍: 在视频制作中,对于规避多人脸崩的镜头,AI生成多人脸易崩,可借助工具修复,如放大工具。终极解决办法是抽出有问题的帧进行修复,但时间成本高,也可换脸,但存在光影和边缘模糊等问题。 解决文字糊掉的问题,推荐使用将 2D 图片转成 3D 效果的工具,用可灵也能在很大程度上保持文字不变。 视频补帧一般使用 top video 黄玉,美图工具 still 可氪金提升视频帧率和画质,但对显卡要求高。 处理团队意见分歧,在传统片子和 AI 片子中,若对镜头或节点分歧较大,一般听写本子和拆分镜的人的意见。 扩图工具可用吉梦扩图,一次只需一个积分,操作方便,如上传图片后调整尺寸和扩图范围。 去水印工具如 HID 工具,还有很多其他去水印工具可选择。 利用现有工具生成艺术字和图片的流程:先点导入参考图,选择免费无版权且字体不太细的字,通过设置边缘轮廓或景深、参考程度、添加关键词等生成,还可进行细节修复和超清放大。利用参考图改变生成效果,参考程度可影响生成结果,不同风格的参考图能带来不同效果。生成视频和首尾帧,多生成几张图制作视频,通过首尾帧让图片有变化效果,但要注意写好提示词。同时,收集参考图时注意版权,可先在其他地方生成保存再当参考图。 以下是一些文字生成视频的 AI 产品: Pika:擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-06
基于--cref的多个人物角色出现在一个画布中,具体该如何操作?我想要详细的步骤
基于 cref 在一个画布中放置多个人物角色的操作步骤如下: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个箭头都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加。 设置画布以描绘两个人的开场提示。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,地址:https://www.yuque.com/frannnk7/aidesign?《AIGC Design 手册》
2025-03-06
Deepseek具体如何应用
DeepSeek 的应用方式如下: 1. 访问 www.deepseek.com ,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt ,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对开发者来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的相关反馈: 1. 华尔街分析师对 DeepSeek 的反应:DeepSeek 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑。高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 2. DeepSeek 的实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于 GPT ,据用户反馈。GRPO 算法替代传统 PPO ,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-03-05
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04