创建一个 AI 知识库的流程如下:
此外,知识库问答是机器人的基础功能,利用了大模型的 RAG 机制(检索增强生成),即先从大型数据集中找到与问题相关的信息(检索),再使用这些信息生成回答(生成)。基于 RAG 机制实现知识库问答功能,需要创建包含大量文章和资料的知识库,通过手工录入等方式上传,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。
[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。[heading5]4)创建【工作流】,告诉AI机器人应该按什么流程处理信息。[content]创建工作流路径:个人空间-工作流-创建工作流“AI前线”Bot的工作流最终结果如上,本次只用到了“知识库”进行处理。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布啦。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等等;💡个人建议:工作流不必复杂,能实现目的即可,所以在设计Bot前“确定目的”和“确定功能范围”很重要。
[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。[heading5]4)创建【工作流】,告诉AI机器人应该按什么流程处理信息。[content]创建工作流路径:个人空间-工作流-创建工作流“AI前线”Bot的工作流最终结果如上,本次只用到了“知识库”进行处理。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布啦。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等等;💡个人建议:工作流不必复杂,能实现目的即可,所以在设计Bot前“确定目的”和“确定功能范围”很重要。
知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答: