直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

leap提示词技术

回答

以下是关于 leap 提示词技术的相关内容:

  • 在工作中,将两个观察联系起来,对 PROMPT ENGINEERING A PROMPT ENGINEER 进行研究,构建元提示指导 LLM 更有效地进行提示词工程。引入元提示组件,如逐步推理模板和上下文规范,从常见优化概念中汲取灵感并引入口头化对应物。在两个数学推理数据集上测试并确定最佳性能组合 PE2,其在 MultiArith 和 GSM8K 数据集上取得了强大的实证性能,在多种设置中超过自动提示词工程基准,在反事实任务上最为有效,在优化生产中使用的冗长、真实世界提示词方面也证明了适用性。
  • 实验中将方法与普通人类提示词、Chain-of-Thought(CoT)提示词和最近的提示词优化方法进行比较,包括人类提示词的普通水平和少示例版本,CoT 提示词及其零示例版本,以及提示词优化方法如 GPT Agent 和 Automatic Prompt Engineer(APE),并介绍了实施细节。
  • 随着 LLM 和生成式 AI 的发展,提示词设计和工程将更关键,讨论了基础和尖端方法,如检索增强生成(RAG),自动提示词工程(APE)这样的创新未来可能成为标准实践。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

小七姐:Prompt Engineering a Prompt Engineer 精读翻译

将这两个观察联系起来,在这项工作中,我们对PROMPT ENGINEERING A PROMPT ENGINEER——构建一个元提示指导LLM更有效地进行提示词工程(§3;图2)。通过反思现有方法的局限性并结合近期在复杂推理提示方面的进展,我们引入了元提示组件,如逐步推理模板和上下文规范,以明确指导LLM在提示词工程过程中进行推理。此外,由于提示词工程可以被视为一个优化问题,我们从常见的优化概念(如批量大小、步长和动量)中汲取灵感,并将它们的口头化对应物引入到元提示中。我们在两个数学推理数据集上测试了这些组件及其变体,包括MultiArith(Roy & Roth,2015)和GSM8K(Cobbe等人,2021),并确定了一个最佳性能组合,我们将其命名为PE2(§5.1)。PE2取得了强大的实证性能(§5.2)。当使用TEXT-DAVINCI-003作为任务模型时,PE2产生的提示词在MultiArith上比“让我们一步步思考”(Kojima等人,2022)的零提示链思考提示词高出6.3%,在GSM8K上高出3.1%。此外,PE2在多种设置中超过了两个自动提示词工程基准,迭代APE(Zhou等人,2023b)和APO(Pryzant等人,2023)(图1)。值得注意的是,PE2在反事实任务上最为有效(Wu等人,2023),在这些任务中,自动提示词工程师预计会对非标准情况进行推理(例如,在8进制而非10进制中进行加法)并通过提示词向任务模型解释这种情况。在学术数据集之外,PE2在优化生产中使用的冗长、真实世界提示词方面证明了其广泛的适用性。

小七姐:PromptAgent 论文精读翻译

我们将我们的方法与三种类型的基线进行比较:普通的人类提示词、Chain-of-Thought(CoT)提示词和最近的提示词优化方法。(1)人类提示词是代表提示词工程普通水平的人类设计的指令,通常来自原始数据集。我们还有一个少示例版本的人类提示词,使用Suzgun等。(2022)为BBH任务和从训练集随机抽样的其他任务提供的教学示例。(2)CoT提示词被认为是非常有效的技巧,通过引入中间推理步骤来提高LLM的性能,特别是对于BBH任务(Suzgun等,2022)。我们直接使用Suzgun等。(2022)为BBH任务提供的CoT提示词,并为其他任务构造CoT提示词。我们还有一个零示例版本的CoT,使用“让我们一步一步地思考”作为提示词来触发CoT行为,而不使用少示例(Kojima等,2022)。(3)提示词优化方法包括GPT Agent和Automatic Prompt Engineer(APE)(Zhou等,2022)。GPT Agent代表了对LLM驱动的自主代理的最近的浓厚兴趣(Weng,2023),例如Auto-GPT²。这样的代理预计会自主地进行规划和自我反思,以解决人类的请求,包括优化任务提示词。我们利用一个强大的ChatGPT插件(OpenAI,2023a)和GPT-4,AI Agents³进行提示词优化。具体地说,类似于PromptAgent,我们采样类似的模型错误,并要求AI Agents插件根据错误重写提示词,迭代次数与PromptAgent相似。最后,APE是最近的提示词优化方法之一,提出了一种基于蒙特卡罗搜索的方法,迭代地提出和选择提示词。²https://github.com/Significant-Gravitas/AutoGPT³https://aiagentslab.com/实施细节。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

随着LLM和生成式AI的发展,提示词设计和工程将变得更加关键。我们讨论了基础和尖端方法,如检索增强生成(RAG)——下一代智能应用的必备工具。随着提示词设计和工程的快速发展,像这里讨论的自动提示词工程(APE)这样的创新可能在未来几年成为标准实践。记住,像APE这样的创新在这里被讨论,未来可能成为日常实践。成为这些激动人心发展的塑造者吧!

其他人在问
AI提示词方法
以下是关于 AI 提示词方法的全面介绍: 优化和润色提示词(Prompt)对于提高文生图、对话等 AI 模型的输出质量非常重要,方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述想要表达的内容,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 编写 prompt 时,还应遵循以下建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,提供足够的上下文。 3. 使用清晰的语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:如有特定期望结果,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,避免过多信息使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好地理解任务的主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代。 在星流一站式 AI 设计工具的 prompt 输入框中: 1. 提示词用于描绘画面。 2. 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 3. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
2024-11-22
文生图反向推出提示词
在文生图中,反向推出提示词的方式主要有以下几种: 1. 在图生图功能中,除了文本提词框外,还有图片框输入口。随便照一张照片拖入后,文本输入框旁边有两个反推提示词的按钮:CLIP 可以通过图片反推出完整含义的句子;DeepBooru 可以反推出关键词组。例如一张小男孩坐在长凳上的图片,通过 CLIP 反推得到的提示词为“a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art”,通过 DeepBooru 反推得到的提示词为“shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers”。但这两种方式生成的提示词可能存在瑕疵,需要手动补充信息。补充好提示词后,调整宽度和高度,使红框刚好匹配图片,同时注意两个重要参数:提示词相关性和重绘幅度。 2. 利用上一期活动图片反推工作流,使用唯美港风图片进行反推提示词,在大模型后接一个相关模型。上一期活动链接:。 3. 利用抱脸的 joycaption 图片反推提示词,然后在哩布上跑 flux 文生图工作流。joycaption 链接(需要魔法):https://huggingface.co/spaces/fancyfeast/joycaptionprealpha 。文生图工作流: 。在哩布上跑文生图:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 。 在写文生图的提示词时,例如“”。
2024-11-22
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
通过图反向退出提示词
在 Stable Diffusion(SD)中,通过图反向退出提示词有以下几种情况: 1. 图生图功能除了文本提词框外还有图片框输入口,可通过图片给与 AI 创作灵感。随便照一张照片拖入,文本输入框旁有两个反推提示词的按钮,CLIP 可通过图片反推出完整含义的句子,DeepBooru 可反推出关键词组。例如一张图通过两种反推方式得到的提示词分别为:CLIP——“a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art”;DeepBooru——“shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers”。但两种方式生成的提示词可能有瑕疵,需要手动补充信息,调整宽度和高度,使红框匹配图片,还要注意提示词相关性和重绘幅度这两个参数。 2. 去除图像人物时,将图放入 WD 1.4 标签器中裁剪只保留背景部分,然后反推提示词,如“outdoors,no humans,tree,scenery,grass,sky,cloud,day,blue sky,mountain,road,house,path,building,nature,cloudy sky”,检查无误后发送到文生图中,开启 ControlNet,使用 inpaint 模型涂抹人物部分生成。可调整控制权重和控制模式来优化效果。 3. 进行角色设计时,设置文生图提示词,如大模型“majicmixRealistic_v6.safetensors”,正向提示词“,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w”,设置参数如迭代步数 50、采样方法 DPM++ 2M Karras、尺寸 1328×800px 后出图,可得到 15 个不同角度的人物图片。
2024-11-22
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
AI提示词
以下是关于 AI 提示词的相关内容: 在舞蹈音乐方面,有 108 个用于生成 AI 舞曲的提示词,例如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”。其中,Punchy 4/4 beats 指节奏感强的四四拍鼓点;Electro bass 指电子低音;Catchy synths 指易于记住的合成器旋律或音效;Pop vocals 指流行音乐风格的主唱;Bright pads 指明亮的和弦音效;Clubready mixes 指适合在夜店播放的混音;Energetic drops 指高潮部分。每个提示词精心制作,以封装各种舞蹈音乐流派的特点和大气质量,适应不同聆听环境,还可用于激发对遗漏流派的描述,结合元素、流派、影响等深化舞蹈音乐的谱系。 对于 SD 新手入门的提示词,有以下相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2024-11-19
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
ai诈骗防范措施和技术手段
以下是关于 AI 诈骗防范的一些措施和技术手段: 1. 政府层面: 拜登签署的 AI 行政命令要求,开发最强大 AI 系统的开发者需向美国政府分享安全测试结果和其他关键信息。对于可能对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 商务部将制定内容认证和水印的指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具,为公众识别官方内容提供便利,并为私营部门和全球各国政府树立榜样。 2. 技术层面: 国家技术标准研究所将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。 国土安全部将把这些标准应用于关键基础设施部门,并建立 AI 安全和安保委员会。能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 3. 企业层面: 360 立志解决大模型的安全问题,将大模型的安全问题分为三类进行研究。 在个人层面,要提高对 AI 诈骗的警惕性,不轻易相信来源不明的信息,学会识别可能的 AI 生成的虚假内容。
2024-11-21
Ai诈骗的技术分析
AI 诈骗通常利用了以下技术手段: 1. 利用 AI 生成的虚假内容:AI 模型可能生成不存在的人物、地点、事件,或者对已知事实进行错误的描述,从而制造虚假信息来误导用户。 2. 模仿真实信息:通过对训练数据中统计模式的过度依赖,生成看似真实但实际与现实不符的内容,以假乱真。 3. 针对用户认知偏差:如同人类认知偏差中的确认偏误、可得性偏差、锚定效应等,AI 诈骗内容可能会迎合这些偏差,让用户更容易接受和相信虚假信息。 产生的原因包括: 1. 训练数据问题:如果训练数据存在偏差、错误或不全面,模型会学习到这些问题并反映在生成的内容中。 2. 模型结构和训练策略:不合理的模型结构和训练策略可能导致模型无法准确理解和生成真实有效的信息。 其影响主要有: 1. 误导用户做出错误决策,例如在投资、消费等方面。 2. 传播虚假信息,破坏信息的真实性和可靠性。 3. 在一些关键领域如医疗诊断中,可能引发安全事故,延误患者治疗。 为了防范 AI 诈骗,需要建立相关的标准和最佳实践来检测 AI 生成的内容,并对官方内容进行认证和标记,例如商务部可以开发内容认证和水印的指导方针,联邦机构可以利用这些工具让公众更容易识别真实的官方通信。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
如何通过技术手段提高非盐生植物的耐盐性
目前知识库中暂时没有关于如何通过技术手段提高非盐生植物耐盐性的相关内容。但一般来说,可以从以下几个方面考虑: 1. 基因工程:通过基因编辑或转基因技术,导入与耐盐相关的基因,增强植物的耐盐能力。 2. 选育优良品种:通过传统的育种方法,筛选和培育具有较高耐盐性的植物品种。 3. 土壤改良:改善土壤的物理、化学和生物性质,降低土壤盐分对植物的危害。 4. 合理灌溉:采用科学的灌溉方式和量,避免盐分在土壤中的过度积累。 5. 施加调节剂:使用植物生长调节剂,调节植物的生理代谢,提高其耐盐性。 需要注意的是,具体的技术手段需要根据植物的种类、生长环境等因素进行综合考虑和选择。
2024-11-18