AI 的工作原理通常包括以下几个方面:
总之,AI 工作原理涉及简单的数学概念、大量的训练数据,以及找出数据中的模式以模拟机器的“思维”过程。
链接:https://every.to/p/how-ai-worksNir Zicherman在他的文章中,用非技术性的语言解释了大型语言模型(LLMs)的工作原理,他采用了烹饪和菜单规划的类比来简化这些概念。Zicherman擅长将复杂的技术概念深入浅出地解释给非技术受众,他将这一过程分为两个主要步骤:构建食物模型和发现模式。在“构建食物模型”的步骤中,目标是教会计算机如何将食物作为数据来处理,而不依赖于口味或食物搭配等定性细节。这一过程通过向计算机输入大量关于过去菜肴搭配的数据来完成,使计算机能够根据菜肴之间的共现频率对它们进行分类。这样就形成了一个“菜肴空间”,在这个空间里,根据共现模式,相似的菜肴被归为一组,而不同的菜肴则相隔较远。第二步“发现模式”则涉及训练模型预测哪种菜肴最能补充一套特定的菜肴组合。模型依据其从数据中学习到的模式,使用这个“菜肴空间”来确定最适合完成一顿餐的菜肴类型。将这个比喻应用到LLMs上,Zicherman建议把食物换成句子,把菜肴换成单词。训练过程包括理解单词之间基于上下文的关系,以及发现用于预测句子中下一个最可能出现的单词的模式。这实际上是文本AI工具的基本操作——“下一个单词预测”。文章强调,尽管AI具有变革性潜力,但其基础原理并不复杂。它涉及简单的数学概念、大量的训练数据,以及找出数据中的模式以模拟机器的“思维”过程。Zicherman在文章最后指出,只要正确解释,AI技术其实是易于理解和简单的,这意味着它并不像许多人所想的那样难以接近。
了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。
在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。