直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai的工作原理是什么

回答

AI 的工作原理通常包括以下几个方面:

  1. 构建模型:以大型语言模型为例,通过输入大量的数据,如过去菜肴搭配的数据(类比)或文本数据,让计算机学习如何处理这些数据,不依赖于定性细节,形成类似“菜肴空间”(类比)的模型,根据共现频率等对数据进行分类。
  2. 发现模式:训练模型依据从数据中学习到的模式,预测哪种元素(如菜肴或单词)最能补充特定的组合。对于文本 AI 工具,基本操作是“下一个单词预测”。
  3. 应用于不同领域:如生成式 AI,通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成,可应用于自动写作、虚拟现实、音乐创作等领域。但在数据处理过程中存在潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。

总之,AI 工作原理涉及简单的数学概念、大量的训练数据,以及找出数据中的模式以模拟机器的“思维”过程。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC Weekly #58

链接:https://every.to/p/how-ai-worksNir Zicherman在他的文章中,用非技术性的语言解释了大型语言模型(LLMs)的工作原理,他采用了烹饪和菜单规划的类比来简化这些概念。Zicherman擅长将复杂的技术概念深入浅出地解释给非技术受众,他将这一过程分为两个主要步骤:构建食物模型和发现模式。在“构建食物模型”的步骤中,目标是教会计算机如何将食物作为数据来处理,而不依赖于口味或食物搭配等定性细节。这一过程通过向计算机输入大量关于过去菜肴搭配的数据来完成,使计算机能够根据菜肴之间的共现频率对它们进行分类。这样就形成了一个“菜肴空间”,在这个空间里,根据共现模式,相似的菜肴被归为一组,而不同的菜肴则相隔较远。第二步“发现模式”则涉及训练模型预测哪种菜肴最能补充一套特定的菜肴组合。模型依据其从数据中学习到的模式,使用这个“菜肴空间”来确定最适合完成一顿餐的菜肴类型。将这个比喻应用到LLMs上,Zicherman建议把食物换成句子,把菜肴换成单词。训练过程包括理解单词之间基于上下文的关系,以及发现用于预测句子中下一个最可能出现的单词的模式。这实际上是文本AI工具的基本操作——“下一个单词预测”。文章强调,尽管AI具有变革性潜力,但其基础原理并不复杂。它涉及简单的数学概念、大量的训练数据,以及找出数据中的模式以模拟机器的“思维”过程。Zicherman在文章最后指出,只要正确解释,AI技术其实是易于理解和简单的,这意味着它并不像许多人所想的那样难以接近。

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

2024AIGC法律风险研究报告(更新版).pdf

在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。

其他人在问
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-22
AI英文全称
AI 的英文全称是 Artificial Intelligence,意思是人工智能。它是指让计算机或机器能像人类一样思考和学习的技术。在不同的应用场景中,AI 有着丰富的表现形式,比如聊天机器人、推理者、智能体、创新者和组织等。同时,在 AI 领域还有众多的术语,如 BlackBox Attack(黑盒攻击)、Bonding Environments(成键环境)、Bonferroni Correction(邦弗朗尼校正)等。
2024-12-22
ai音乐创作管线
AI 音乐创作管线包括以下几个方面: 1. ByteComposer:由字节跳动人工智能实验室开发,利用大型语言模型(LLM),通过概念分析、草稿创作、自我评估与修改、审美选择四个关键步骤生成旋律。其核心模块包括专家模块、生成器模块、投票器模块以及记忆模块,通过精心设计的提示激发 LLM 的音乐理论知识,并通过交叉验证优化提示设计。在实验中证明了其在音乐创作方面的有效性,达到了初级作曲家的水平,为用户提供了直观、可控且富有创造性的音乐创作平台。 2. 《We Are The One》的融合工作流:呼应了 AI 技术在音乐创作中不可或缺的愿景,核心是介绍使用 AI 音乐平台 UDIO.com 进行音乐创作的技术分享,以歌曲《We Are the One》的制作过程为例,展示如何结合 AI 与传统音频处理手段,打造以 AI 为主导的音乐制作工作流。 3. 自定义前奏的工作流:Suno 和 Udio 推出上传音频文件生成音乐的功能,可精确控制速度、旋律、配器、合成等。节省的点数可用于多 Roll 与流派、心情、场景相关的曲子并存好旋律素材,也可用于 roll 更多细节调整部分以提升作品品质。通过简单例子演示工作流。
2024-12-22
AI客服用哪个智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆(所有的上下文学习利用模型的短期记忆来学习)和长期记忆(通过外部向量存储和快速检索实现长时间保留和回忆无限信息的能力)。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 AI Agent 有效使用工具的前提是全面了解工具的应用场景和调用方法。利用 LLM 强大的 zeroshot learning 和 fewshot learning 能力,AI Agent 可以通过描述工具功能和参数的 zeroshot demonstration 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。 AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 在追求人工通用智能(AGI)的征途中,具身 Agent(Embodied Agent)正成为核心的研究范式,强调将智能系统与物理世界紧密结合。与传统的深度学习模型相比,LLMbased Agent 不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动,并利用内部丰富的知识库进行决策和产生具体行动来改变环境。 然而,关于 AI 客服适合使用哪个智能体,需要根据具体的需求和场景来确定。例如,如果需要处理大量复杂的任务分解和协调,可能需要具备强大规划和推理能力的智能体;如果需要与用户进行频繁的互动和反馈,可能需要对环境感知和理解能力较强的智能体。
2024-12-22
ai怎样精准搜索
AI 精准搜索可以通过以下几个关键步骤来实现: 1. 意图识别:对用户提问进行分类,如导航类、信息查询类、交易类、本地信息类等,还包括多级子分类。通过分类匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率。目前主流的实现方案主要是通过提示词请求大模型完成,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 2. 问题改写(Query Rewrite):在完成意图识别并确认需要联网检索后,对用户的 query 进行改写,目的是得到更高的检索召回率。主要包括三个维度的改写,即让提问有更精准/更专业的表达、补全上下文做指代消解、名词提取。改写可以通过设置提示词请求大模型完成。 3. 多信息源聚合(Multi Source):提升 AI 搜索准确度的另一个关键措施是做多信息源整合。结合意图识别和问题改写,假设用户搜索特定问题,可根据意图判断是否联网及搜索类型,提取概念名词,除常见检索外,还可检索其他信息源获取更多内容。多信息源的整合可能涉及海量数据处理和自建信息源索引等技术,传统搜索厂商和依靠 UGC 建立数据飞轮的超级 App 在这方面有优势。 4. 搜索结果重排(Reranking):AI 搜索做多信息源整合时,需要对检索结果重排。重排目的主要是过滤不相关参考信息和对相关性进行排序,便于截取权重最高的 top_k 条记录作为引用参考。重排方案有使用 zilliz 向量数据库+llamaindex 框架做相似度匹配和使用 FlashRank 开源框架,但前者效率低,后者准确度不够高。 5. 搜索内容读取(Read Content)
2024-12-22
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
ai原理
AI 的原理包括以下几个方面: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-19
deepfake的技术原理是什么?
深度伪造技术(deepfakes)是一种利用 AI 程序和深度学习算法实现音视频模拟和伪造的技术。其原理在于投入深度学习的内容库越大,合成的视音频真实性越高,甚至可以达到以假乱真的程度。例如,粉丝们会通过 Stems 音轨分离工具将人声与原始歌曲分离,再使用人声转换模型将人声转换成另一位明星的风格,然后将新的人声轨道与原始作品重新拼接在一起。DiffSVC 就是一种特别流行的用于此目的的语音传输模型。 目前,深度赝品的创建需要大量的计算技能,但现在几乎任何人都可以创建它们。生成式人工智能系统迅速导致了许多法律和道德问题,比如由人工智能创建的图像和视频声称是真实的,但实际上并非如此,已经出现在媒体、娱乐和政治领域。
2024-12-14
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
transformer的原理
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
PIKA和pixverse的特效玩法,原理是什么
PIKA 推出了特效工具 PIKAFFECT,它能够提供崩塌、溶解、瘪掉、魔术等特效处理,有助于创意视频的制作。关于 Pixverse 的特效玩法原理,目前所提供的内容中未给出明确的相关信息。
2024-11-20
在coze创建一个符合我需求的智能体(带工作流)之前,需要梳理什么内容
在 Coze 创建一个符合需求的智能体(带工作流)之前,需要梳理以下内容: 1. 规划: 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 例如,在搭建“结构化外文精读专家”Agent 时,要从制定关键方法与流程开始梳理任务目标。另外,搭建整理入库工作流时,新建工作流“url2table”,包括开始节点输入 url(无需额外配置)、变量节点引入 bot 变量中保存的飞书多维表格地址、插件节点获取页面内容等。
2024-12-21
我需要在coze创建一个符合我需求的智能体(带工作流)全流程,要求流程完整(从创建之前的工作)
以下是在 Coze 创建一个符合您需求的智能体(带工作流)的全流程: 1. 打开 Coze 官网 https://www.coze.cn/home ,注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可存储结构化数据,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 4. 创建图像工作流: 图像流分类:图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。 空间风格化插件:空间风格化插件有个参数,image_url 就是毛坯房的图片地址;Strength 提示词强度,就是提示词对效果图的影响度;Style 生成效果的风格,比如新中式、日式、美式、欧式、法式等等。 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点解析:开始节点就对应配置三项内容,提示词优化。 5. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求,自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以不知疲倦地给您出图了。
2024-12-21
帮我梳理coze创建一个符合我需求的带工作流的智能体全流程,要求流程完整
以下是用 Coze 创建带工作流的智能体的全流程: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流: 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果,可使用调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,包括提示词优化。 人设和回复逻辑中,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 3. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 3.1 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 3.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,将链接存储在 bot 的变量中,并在工作流运行时进行引用。 3.3 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-12-21
帮我梳理coze创建一个带工作流的智能体的全流程
以下是用 Coze 创建带工作流的智能体的全流程: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 打开 Coze 官网 https://www.coze.cn/home 。 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行智能体,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 在创建图像工作流方面: 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 配置好人设和回复逻辑,然后点击右上角发布,机器人就可以出图。
2024-12-21
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20