直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何在企业共创工作坊中,使用AI赋能研讨共创

回答

目前知识库中暂时没有关于如何在企业共创工作坊中使用 AI 赋能研讨共创的相关内容。但一般来说,可以考虑以下几个方面:

  1. 利用自然语言处理技术对研讨内容进行实时分析和总结,帮助快速梳理关键观点和共识。
  2. 借助 AI 智能助手提供相关的案例、数据和参考资料,丰富研讨的素材和视角。
  3. 运用 AI 预测模型,对研讨中提出的方案进行初步的效果预测和风险评估。
  4. 利用 AI 驱动的可视化工具,将复杂的研讨内容以更直观清晰的方式呈现。

您可以根据企业共创工作坊的具体需求和场景,有针对性地选择和应用合适的 AI 技术和工具。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
ai如何赋能在装修行业
AI 在装修行业的赋能主要体现在以下方面: AI 房地产装修设计平台:例如酷家乐装修设计软件,利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据自身喜好进行选择和调整。 目前大多数的“AI 应用/AI 转型”在装修等行业还存在一些问题,很多还在走“数字化转型”的老路,把 AI 往现有流程上套用,讲“固化流程”“节约成本”的故事。但在技术加速迭代的当下,这样做可能导致“做出来就是过时的”,限制企业的主动进化能力。我们应从“AI 能创造和满足装修行业的什么新需求”出发,重新定义未来业务模式。
2024-11-14
如何用ai赋能高报行业
以下是关于如何用 AI 赋能高报行业的一些信息: 1. 金融服务方面: 生成式 AI 能帮助金融服务团队改进内部流程,简化日常工作。例如,它可以帮助回答财务问题,从更多数据源获取数据,自动化突出趋势、生成预测和报告的过程。 能帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,发现模式并为预测建议输入。 能自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 能在会计和税务方面提供帮助,如综合、总结税法和潜在扣除项的可能答案。 能在采购和应付账款方面自动生成和调整合同、采购订单和发票以及提醒。 2. 教育方面:生成式 AI 可以通过创建资源来支持教育工作者部署 AI 赋能的教育工具,例如学校中的个性化辅导,从而改变教育。 3. 劳动力方面: 制定原则和最佳实践,以减轻 AI 对工人的危害并最大化其益处,解决工作岗位流失、劳动标准、工作场所公平、健康和安全以及数据收集等问题。 制作关于 AI 对劳动力市场潜在影响的报告,并研究和确定加强联邦对面临劳动力中断(包括因 AI 导致)的工人的支持的选项。 此外,拜登签署的 AI 行政命令还涉及以下方面: 1. 催化美国各地的 AI 研究,通过国家 AI 研究资源的试点为研究人员和学生提供关键的 AI 资源和数据,并扩大在医疗保健和气候变化等重要领域的 AI 研究资助。 2. 促进公平、开放和竞争的 AI 生态系统,为小型开发者和企业家提供技术援助和资源,帮助小企业将 AI 突破商业化,并鼓励联邦贸易委员会行使其职权。 3. 利用现有权力,通过现代化和简化签证标准、面试和审查,扩大高技能移民和在关键领域有专长的非移民在美国学习、停留和工作的能力。 4. 在国际上: 扩大双边、多边和多利益相关方的合作,建立强大的国际框架来利用 AI 的益处并管理其风险和确保安全。 与国际伙伴和标准组织加速关键 AI 标准的开发和实施,确保技术安全、可靠、可信和可互操作。 促进国外安全、负责和肯定权利的 AI 开发和部署,以解决全球挑战,如推进可持续发展和减轻对关键基础设施的危险。 确保政府负责任和有效地使用 AI 。
2024-11-05
AI赋能影视创作流程
以下是 AI 赋能影视创作的流程: 在分镜管理方面: 导演使用增强现实界面来规划场景和指导演员,增强现实技术让导演能直观地设计和预览复杂场景。 编剧通过 AI 助手生成剧本创意和对话,人工智能成为编剧的新伙伴,激发创意,优化叙事。 观众通过脑机接口直接体验电影情感和场景,脑机接口技术可能将观众带入完全沉浸的电影体验。 在视频制作管理流程中: 小组讨论会上,创作者讨论使用区块链保护电影版权的策略,区块链技术保护创作不被非法复制,确保创作者权益。 年轻观众在虚拟现实电影节中探索不同的电影世界,虚拟现实电影节让观众在家中就能穿越至各个电影世界。 观众可在手中的智能设备上,通过应用选择观看个性化推荐的电影,智能推荐系统根据观众的喜好和观影历史定制电影列表。 影视制作人在全息投影上协作,编辑电影场景,全息技术让电影制作变得更加直观和协同。 在《李清照》AI 视频创作流程项目中: 文字方面使用 GPT 脚本。 图片使用 Midjourney。 视频使用 Runway。 音频使用 ElevenLabs、剪映。 剪辑使用剪映。 还用到其他工具如 PS、AE。 在故事创作方面: 按照特定模板生成穿越故事的 Prompt,包括标题、设置、主角、反派角色、冲突、对话、主题、基调、节奏和其它等方面的设定。 根据模板生成的内容填充为特定题材的小说,并进行分章节,生成小说目录。
2024-10-28
ai赋能设计
以下是关于 AI 赋能设计的相关内容: 在大淘宝设计部 2023 年度的实践中,AI 成为得力助手,主要工具为 Midjourney 和 Stable Diffusion,辅助工具有 RUNWAY 和 PS beta 等。AI 改变了设计工作流,在营销设计中,整体项目设计时间减少约 18%,创意阶段丰富性提升约 150%,时间节省约 60%。具体效果包括创意多样、执行加速和整体提效。 对于室外设计,一些最佳实践包括:充分利用 AI 的创意生成能力,输入关键词生成多种方案并获取灵感;结合模拟和可视化功能,如利用 AR/VR 技术评估验证方案;运用分析和优化能力,对采光、动线、材料等进行优化;借助自动化设计功能生成平面图、立面图等;融合人工与 AI 的协作模式,发挥各自优势。 一泽 Eze 认为从社交名片 Prompt 到创意名片 Prompt 的演进,最大意义在于挖掘了 LLM 本身的设计潜力,AI 已展现出自主性,仅需少量提示就能完成类似人类设计师的工作,随着大模型能力提升和资源扩充,Prompt as a Service 的时机正在成熟,“人人都是产品经理、设计师、程序员”的时代已近在眼前。
2024-10-25
AI与高速公路管理业务的赋能场景
以下是 AI 与高速公路管理业务的赋能场景: 1. 自动驾驶:可用于开发自动驾驶汽车,提高高速公路行驶的安全性和效率。 2. 交通管理:优化高速公路上的交通信号灯和交通流量,缓解拥堵。 3. 预测性维护:通过分析高速公路设施的实时数据,预测潜在故障和维护需求,减少设施停机时间和维修成本。 4. 车辆安全系统:增强车辆在高速公路上的安全性能,如自动紧急制动、车道保持辅助和盲点检测等。 5. 个性化用户体验:根据驾驶员在高速公路上的偏好和习惯来调整车辆设置。 6. 销售和市场分析:帮助高速公路相关企业分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车在高速公路上的行驶中,优化电池使用和充电策略,提高能源效率和延长电池寿命。 8. 共享出行服务:优化高速公路上的共享出行路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 车辆远程监控和诊断:远程监控车辆在高速公路上的状态,提供实时诊断和支持。 目前在游戏领域,生成式 AI 存在构建符合行业需求的工具套件的机会,例如 Runway 为视频创作者提供人工智能辅助工具,类似的需求在游戏领域也有潜力,但尚未出现像 Runway 这样的游戏工具。
2024-10-23
AI赋能教育教学
AI 在教育教学领域具有广泛的应用和巨大的潜力: 1. 数字教师:借助大型语言模型,人工智能生成的角色可以像历史人物一样授课,如让牛顿亲自讲授《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。这些数字教师博学多能、善解人意,不受情绪左右,基本能实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,因材施教,提高教育效率和质量,缓解教育资源不平等问题。 2. 辅助自学:可以要求人工智能解释概念,获取良好的学习效果,但要注意对关键数据根据其他来源仔细检查,以防人工智能产生幻觉。 3. 教育资源支持:拜登签署的 AI 行政命令中提到要塑造 AI 改变教育的潜力,为教育工作者部署支持个性化辅导等的 AI 教育工具创造资源。
2024-10-23
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
生成PPT的AI 工具
以下是关于生成 PPT 的 AI 工具的相关信息: 目前市面上大多数 AI 生成 PPT 的思路是:AI 生成 PPT 大纲,手动优化大纲,导入工具生成 PPT,优化整体结构。 推荐的市场分析文章:《》 常见的相似问题有:有没有生成 PPT 的应用推荐,不用翻墙的;免费生成 PPT 的网站有哪些;推荐一款文字生成 ppt 的工具;免费 ai 制作 ppt 软件;推荐 3 款好用的 AI 制作 ppt 工具。 深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。对于追求高度专业和个性化展示的群体,如软件实施人员和销售人员,选择功能丰富且模板专业的工具更具优势;对于偶尔涉足 PPT 制作的人群,如软件工程师,简洁、直观的工具可能更适合。选择合适的工具要根据实际需求调整,试用和体验比盲目跟风更明智。 作者熊猫 Jay 因企业内部要求编写此文章做内部培训并公开分享。无论您是 PPT 专家还是新手,AI 工具都能提供帮助,如提供多种精美 PPT 模板,节省组织内容和编排思路的时间。文中介绍了 5 款 AI PPT 工具,包括 MindShow、爱设计、闪击、Process ON、WPS AI,每款工具都有独特优势。作者因该培训材料效果不错还获得 1000 元红包奖励,并解决了小伙伴整合 PPT 和 AI 的需求。
2024-11-19
AI提示词
以下是关于 AI 提示词的相关内容: 在舞蹈音乐方面,有 108 个用于生成 AI 舞曲的提示词,例如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”。其中,Punchy 4/4 beats 指节奏感强的四四拍鼓点;Electro bass 指电子低音;Catchy synths 指易于记住的合成器旋律或音效;Pop vocals 指流行音乐风格的主唱;Bright pads 指明亮的和弦音效;Clubready mixes 指适合在夜店播放的混音;Energetic drops 指高潮部分。每个提示词精心制作,以封装各种舞蹈音乐流派的特点和大气质量,适应不同聆听环境,还可用于激发对遗漏流派的描述,结合元素、流派、影响等深化舞蹈音乐的谱系。 对于 SD 新手入门的提示词,有以下相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2024-11-19
该如何学习ai
以下是关于学习 AI 的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。
2024-11-19
能生成长视频的ai工具
以下是一些能够生成长视频的 AI 工具: 1. LTX Studio:输入文本提示和创意即可生成完整剧本和视频,具有框架控制、AI 叙事、角色一致性、自动剪辑等特点。链接:https://ltx.studio 。 2. invideoAI:输入想法后自动生成脚本和分镜描述,进而生成视频,再经过人工二编合成长视频。 3. Opusclip:可将长视频剪成短视频。 4. Raskai:能将短视频素材直接翻译至多语种。 5. descript:通过屏幕或播客录制,以 PPT 方式做视频。 6. veed.io:具有自动翻译和自动字幕功能。 7. clipchamp:微软的类似于 AI 版剪映的工具。 8. typeframes:与 invideoAI 类似,内容呈现中文本主体比重更多。 需要注意的是,目前部分工具生成的长视频可能在质量或某些方面还存在一定的局限性,仍在不断发展和完善中。
2024-11-19
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19