Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图说AI大模型?

Answer

以下是关于 AI 大模型的相关内容:

一、大模型的整体架构

  1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
  2. 数据层:包括静态的知识库和动态的三方数据集,这里的数据层并非用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。
  3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法实现)或多模态模型(如市面上的文生图、图生图等模型,训练所用数据与 llm 不同,为图文或声音等多模态的数据集)。
  4. 平台层:例如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。
  5. 表现层:也就是应用层,是用户实际看到的地方。

二、再补充一些概念 - AI Agent Agent 是从年前到现在比较火的概念,被很多人认为是大模型的未来主要发展方向。中间的“智能体”其实就是 llm 或大模型,四个箭头分别是为 llm 增加的工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它把 llm 之间以及 llm 和工具之间通过代码或 prompt 的形式进行串接。

三、必须理解的核心概念

  1. 泛化能力:指模型在未曾见过的数据上表现良好的能力,用大白话讲就是“举一反三”的能力,人类泛化能力很强,无需见过世界上每一只猫就能认识猫的概念。
  2. 多模态:指多数据类型交互,能提供更接近人类感知的场景,大模型对应的模态有文本、图像、音频、视频等。
  3. 对齐能力:指与人类价值观与利益目标保持一致的能力。但目前阶段,有很多提示词注入的方法能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场。
Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。

走入AI的世界

图9大模型核心基础概念泛化能力:不用人话说是“指模型在未曾见过的数据上表现良好的能力”,用大白话讲就是“举一反三”的能力,人类就是泛化能力很强的物种,我们不需要见过这个世界上的每一只猫,就能认识猫这个概念。多模态:指多数据类型交互,从而能够提供更接近人类感知的场景。正如人有眼、耳、鼻、舌、身、意等多个模态,大模型对应的模态是文本、图像、音频、视频……对齐能力:指与人类价值观与利益目标保持一致的能力。大模型相比我们普通人类个体是“无所不知”的,但他并不会把他知道的都告诉你,例如你问chatGPT如何制造炸弹,他虽然知道,但并不会告诉你具体步骤和配方,这是因为chatGPT做了很好的对齐工程,但目前阶段,有很多提示词注入的方法,也能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场(事实上,人类自身就不是一个价值观对齐的物种,同一件事在一些群体眼中稀松平常,但在另一些群体眼中十恶不赦,因此“和谁对齐”确实是一个灵魂问题)。图10大模型核心基础概念

Others are asking
AI数字人
AI 数字人是运用数字技术创造出来的人,目前业界尚无准确定义,一般可根据技术栈分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随着视觉算法进步,在无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程包含三个核心算法: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应,以实现像人与人一样的对话交互。 AI Agent(人工智能体):充当数字人的大脑,可接入大语言模型,拥有记忆模块等使其更真实。 TTS(文字转语音):将数字人依靠 LLM 生成的文字输出转换为语音,保持语音交互一致性。 此外,还有一些与 AI 数字人相关的摊位活动,如为企业和个人提供数字劳动力,解决重复性、创意性工作难题的“AI 数字员工”体验 demo,包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等;以及“AIGC 数字艺术挂画”“数字生命赋予每个人的新生”“AI 智能体应用”“Ai 心理疏导”“AIGC(图生图)趣味定制;AI 数字人定制”等。
2025-02-17
有什么用于搭建页面的ai应用吗
以下是一些用于搭建页面的 AI 应用: 1. 韦恩:扣子“AI 应用”入门 选择桌面网页,进入界面编排页面。 左侧有组件、模板和结构,组件包括布局组件、展示组件、输入组件和 AI 组件等。 中间是页面布局,左侧组件拖入并通过右侧的属性面板、事件面板进行设置。 右侧是属性面板和事件面板,不同组件的事件种类不同。 模板部分有官方提供的参考模板,结构部分方便找到页面及相关组件。 2. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 3. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 4. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 5. The Grid 网址:https://thegrid.io/ 特点:Molly 是 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动优化,支持多种内容类型。 此外,还有韦恩:扣子“AI 应用”进阶中提到的邮票收藏馆应用的搭建案例,包括业务背景与逻辑梳理、页面设计等方面。
2025-02-17
最新的AI行业动态和进展有哪些,包含2025年
以下是关于最新的 AI 行业动态和进展(包含 2025 年)的内容: 2024 年: 图片超短视频的精细操控:包括表情、细致动作、视频文字匹配。 有一定操控能力的生成式短视频:风格化、动漫风最先成熟,真人稍晚。 AI 音频能力长足进展:带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可以稳定输出视频,可以直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 AI 的商业模式开始有明确用例:数据合成、工程平台、模型安全等。 可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。 中国 AI 达到或超过 GPT4 水平;美国出现 GPT5;世界上开始现“主权 AI”。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)。 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。 AI 立法、伦理讨论仍然大规模落后于技术进展。 2025 2027 年: AI 3D 技术、物理规则成熟:正常人无法区别 AI 生成还是实景拍摄。 全真 AI 虚拟人成熟:包含感情的 AI NPC 成熟,开放世界游戏成熟;游戏中几乎无法区别真人和 NPC。 AR/VR 技术大规模商用。 接近 AGI 的技术出现。 人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。 “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。 AI 引发的社会问题开始加重,结构性失业开始出现。 AGI 对于地缘政治的影响开始显露。 此外,还有以下相关动态: 算力瓶颈不只是单纯的技术和建设问题,而是影响整个行业竞争格局的重要变量。 逐渐进入多模态灵活转换的新时代,实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换。 人类劳动形式逐步“软件化”,复杂劳动被抽象为可调用的软件服务,劳动流程被大幅标准化和模块化,劳动能力像“即插即用”的工具一样易于获取。 AI 行业目前仍处于严重亏损的阶段,商业化进程仍有巨大提升空间。 云厂商是产业链中毋庸置疑的“链主”。 2024 年,头部 AI 应用的品类变化并不显著。创意工具(如图像和视频内容创作)依然占据最大比重。To P(面向专业用户)应用展现出强大的市场潜力,ToB(面向企业)应用发展路径相对复杂,ToC 应用面临较大的挑战。 在 AI 应用领域,Copilot 和 AI Agent 是两种主要的技术实现方式。 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,众多中国 AI 公司积极出海。 2024 年 10 月的大事记包括: Gartner 发布 2025 年十大战略技术趋势。 DeepSeek 开源多模态 LLM 框架 Janus。 司南开源大模型能力评估模型 CompassJudger。 Anthropic 发布新功能 computer use,发布 Claude 3.5 Haiku,更新 Claude 3.5 Sonnet。 Stability AI 发布 Stable Diffusion 3.5。 x.AI 正式推出 API。 ComfyUI V1 官方桌面版开放内测。 华为发布纯血操作系统鸿蒙 OS NEXT。 Jina AI 推出高性能分类器 Classifier API。 OpenAI 发布图像生成模型 sCM。 Midjourney 上线外部图片编辑器。 Runway 发布动画视频功能 ActOne。 Ideogram 推出 AI 画板工具 Canvas。 Genmo 开源视频生成模型 Mochi 1。 荣耀发布操作系统 MagicOS 9.0。 美国 14 岁少年与 C.AI 聊天后离世。 新华社发文表示警惕「AI 污染」乱象。 港中文&趣丸推出 TTS 模型 MaskGCT。 科大讯飞发布讯飞星火 4.0 Turbo。 阿里通义代码模式开始内测。 Anthropic Claude 新增数据分析功能。 北京市大中小学推广 AI 学伴和 AI 导学应用。 稚晖君开源「灵犀 X1」全套资料。 OpenAI 高管 Miles Brundage 离职。
2025-02-17
最新的AI行业动态和进展有哪些
以下是最新的 AI 行业动态和进展: 1. 《2024 年度 AI 十大趋势报告》发布,其中提到大模型创新方面,架构优化加速涌现,融合迭代大势所趋;Scaling Law 泛化方面,推理能力成皇冠明珠,倒逼计算和数据变革;AGI 探索方面,视频生成点燃世界模型,空间智能统⼀虚拟和现实;AI 应用格局方面,第⼀轮洗牌结束,聚焦 20 赛道 5 大场景;AI 应用竞争方面,多领域竞速运营大于技术,AI 助手兵家必争;AI 应用增长方面,AI+X 赋能类产品大干快上,原生 AI 爆款难求;AI 产品趋势方面,多模态上马,Agent 席卷⼀切,高度个性化呼之欲出;AI 智变千行百业,左手变革生产力,右手重塑行业生态;AI 行业渗透率方面,数据基础决定初速度,用户需求成为加速度;AI 创投方面,投融资马太效应明显,国家队出手频率提升。 2. 2024 年 9 月的 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM 和 Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 3. 2024 年,国内 AI 行业融资总金额增加,但事件数同比下降,马太效应越发明显,资本更青睐热点和高成熟度赛道。智能驾驶在各细分赛道中独占鳌头,AI+教育、AI+游戏、AI+医疗等赛道投资总额也有增长。政府积极推进 AI 原生行业发展,北京、上海、武汉等城市出台系列政策吸引人才和企业,国家队频繁投资体现政策支持。
2025-02-17
ai在学习领域应用
AI 在学习领域有广泛的应用,具体如下: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考其对未来社会的影响,培养思考和判断能力。 AI 的应用场景还包括: 1. 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 2. 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货。 4. 教育:实现个性化学习,为每个学生提供定制化的学习体验。 5. 农业:分析农田数据,提高农作物的产量和质量。 6. 娱乐:开发虚拟现实和增强现实体验。 7. 能源:优化能源的使用,提高能源效率。 在教育领域的具体应用: 1. 个性化学习平台:如 Knewton 平台,通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:如 Pearson 的 Intelligent Essay Assessor,利用自然语言处理技术批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 Google 的 AI 教育工具 AutoML,创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实和增强现实:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获得即时反馈。
2025-02-17
有没有形容在ai应用中 数据很重要的图
在 AI 应用中,数据具有极其重要的地位,主要体现在以下几个方面: 1. 训练过程:计算机通过数据进行自我学习,每一层节点代表的含义由数据决定,数据的质量和偏差会直接影响 AI 学习结果。 2. 模型效果:高质量的数据如同精炼后的汽油,能极大提升模型效果。而国内中文互联网数据质量相对较低,获取高质量数据困难,存在“垃圾进,垃圾出”的问题。 3. 企业应用:企业应确保数据的多样性与真实性,进行数据审查和多源验证,避免历史偏见被放大。很多企业虽认识到数据重要,但数据梳理是漫长枯燥的过程。 4. 避免陷阱:要警惕数据陷阱和新的信息茧房,避免因数据问题导致决策失误。
2025-02-17
你有看图说话功能么
以下是为您提供的关于看图说话相关的内容: 像高手一样编写 GPT 中,顶部有和 GPT 使用搜索和画图一样的小图示“Talk to”。 实战教程:使用 Sadtalker 让照片说话。利用开源程序让照片说话唱歌,达到基本唇形同步。可独立使用或作为插件放入 stablediffusion。提供了整合包及相关视频教程和下载链接,具体步骤包括点我启动、选择下载图标、启动应用、选择 sadtalker 同步器、导入图片和声音等。 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi 中,ComfyUI 全球领导力峰会搭建数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或上传一段音频,就可以生成短视频让“照片开口说话”,并提供了不同风格的照片驱动效果展示及相关工作流作者和创意策划信息。
2024-12-15
大语言模型幻觉的本质是什么
大语言模型幻觉的本质主要包括以下方面: 1. 大语言模型的底层原理是基于数学概率的文字预测,类似于文字接龙,这导致其存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。 2. 样本存在错误,即如果大语言模型学习的“教材”中有错误,那么它也容易给出错误的回答。 3. 大语言模型技术的本质导致其输出结果具有不可预测性,且静态的训练数据导致其掌握的知识存在截止日期,无法即时掌握最新信息。 4. 大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。
2025-02-16
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入衣服材质图片,得到经过设计后的材质成品衣服
目前尚未有专门的 AI 大模型或智能体能够直接实现您所描述的输入衣服材质图片就得到经过设计后的材质成品衣服的功能。但随着 AI 技术的不断发展,未来可能会出现相关的应用。
2025-02-16
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
你用的什么模型
我使用的模型是 GPT4。在不同的应用场景中,还存在其他多种模型可供选择和切换,例如: 在 Cursor 中,AI 输入框下方有下拉列表,默认准备好的模型有、cursorsmall 等,您还可以在 Cursor Settings>Models>Model Names 下添加其他模型。 ComfyUI FLUX 原生支持,FLUX.1 有三个变体:FLUX.1是一个蒸馏的 4 步模型,拥有 Apache 2.0 商用许可,适用于在本地进行部署或者个人使用。相关模型的链接、模型与工作流地址、说明文档等信息如下: FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main FLUX.1:https://huggingface.co/Kijai/fluxfp8 FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1schnell/tree/main 模型与工作流地址: https://pan.quark.cn/s/2797ea47f691 https://pan.baidu.com/s/1nV26Fhn3WYBLrg2hSA0_YQ?pwd=cycy 说明文档:https://xiaobot.net/post/8fd64f3f52d14948824d5ee0c38e2594
2025-02-16