直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

一个大学生,如果要了解学习通用人工智能,提高其通用人工智能素养,请给出你的建议

回答

以下是给大学生了解学习通用人工智能、提高通用人工智能素养的建议:

  1. 从编程语言入手学习:
    • 可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。
    • 探索百度的“文心智能体平台”、Coze 智能体平台等面向大学生的平台。
  3. 学习 AI 基础知识:
    • 掌握 AI 的基本概念、发展历程。
    • 熟悉主要技术,如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注权威媒体和学者,了解最新进展。
    • 思考 AI 技术对未来社会的影响,培养思考和判断能力。
  6. 深入学习数学知识:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等基本概念。
    • 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。
  7. 掌握算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:了解基本概念。
  8. 了解评估和调优:
    • 性能评估:学会评估模型性能的方法,如交叉验证、精确度、召回率等。
    • 模型调优:学习使用网格搜索等技术优化模型参数。
  9. 学习神经网络基础:
    • 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。
    • 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

报告:GPT-4 通用人工智能的火花

Mathematical abilities在本节中,我们评估了GPT-4在表达数学概念、解决数学问题以及面对需要数学思维和模型构建的问题时的能力。我们展示了相对于以前的LLMs,甚至是专门针对数学进行了优化的模型(如Minerva)而言,GPT-4在这个领域也有了一个飞跃。然而,GPT-4仍然远远不及专家的水平,没有进行数学研究所需的能力。读者应当谨慎看待本节中的结果——正如我们将看到的,GPT-4可以回答困难的(实际上是具有竞争性的)高中数学问题,并且有时可以就高级数学话题进行有意义的对话。然而,它也可能犯非常基本的错误,有时产生不连贯的输出,这可能被解释为缺乏真正的理解,它的数学知识和能力可能以看似随机的方式依赖于上下文。虽然使用与评估人类能力相同的标准(例如解决标准考试问题)来评估GPT-4的数学能力很有诱惑力,但考虑到上述情况,这将无法完全描绘模型的能力。为了真正理解模型的能力,我们需要将「数学能力」分解为各种子组件,并评估GPT-4在每个领域的表现。在本节中,我们将使用具体的示例和讨论来说明模型的优点和缺点,并试图找出这些差距可能的根本原因。为了给读者一个对GPT-4在解决数学问题方面的表现的第一印象,请参考下图中的例子。根据上述问题,需要首先想出正确的年度人口变化表达式,使用它得出一个递推关系式,然后解决这个由两个方程组成的方程组。GPT-4成功地得出了解决方案并提出了一个(大多数情况下)正确的论证。相比之下,经过多次独立尝试,ChatGPT始终未能实现上述任何步骤,产生了一个荒谬的论证,结果得出了错误的答案。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
国内有哪些学习通用人工智能的峰会或者活动
以下是国内一些学习通用人工智能的峰会或者活动: 2024 北京智源大会:这是人工智能领域的综合性内行盛会,自 2019 年 10 月首度亮相,已成功举办五届,今年是第六届。大会以全球技术视野、内行精英汇聚、洞察关键趋势为鲜明特色,邀请海内外研究者开展精彩演讲与深入对话。共有 11 位图灵奖得主曾参与大会,每年有 200 位顶尖专家出席,来自 30 多个国家和地区的 50 万观众汇聚一堂,分享研究成果、探寻前沿知识、交流实践经验、建立紧密合作。论坛议程及介绍:https://mp.weixin.qq.com/s/xhDzdTMtzigyq68_aNFVg 。2024 年 6 月 14 日上午举行,主持人是黄铁军,智源研究院理事长。开幕式于 09:00 09:20 致辞,智源进展报告于 09:20 10:00 进行,报告人是王仲远,智源研究院院长。全体大会包括 10:00 11:00 的主题报告:多模态大模型,报告人是特邀嘉宾 Aditya Ramesh,OpenAl Sora 及 DALL.E 团队负责人,对话嘉宾是谢赛宁,纽约大学助理教授。11:00 12:30 进行主题讨论:通用人工智能。Talk 2 环节 1 是 Fireside Chat,对话嘉宾是李开复,零一万物 CEO 张亚勤,清华大学智能产业研究院院长,智源学术顾问委员。环节 2 是报告大模型为通用人工智能带来曙光,报告人是王海峰,百度 CTO。环节 3 是尖峰对话:通往 AGI 之路,主持人是王仲远,智源研究院院长,对话嘉宾是王小川,百川智能 CEO 张鹏,智谱 AI CEO 杨植麟,月之暗面 CEO 李大海,面壁智能 CEO 。
2024-12-17
通用人工智能 英语翻译
“通用人工智能”常见的英语翻译有:“Artificial General Intelligence”(简称 AGI) 。更多信息请见 。
2024-12-13
智能体是什么?设计框架及关键技术是什么?如何从通用大模型搭建一款智能体
智能体是建立在大模型之上的具有特定功能的系统。 其特点包括: 1. 强大的学习能力:能通过大量数据学习,理解和处理语言、图像等多种信息。 2. 灵活性:适应不同任务和环境。 3. 泛化能力:将学到的知识泛化到新情境,解决未见过的类似问题。 智能体的应用领域广泛,如: 1. 自动驾驶:感知周围环境并做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供自动化客户支持。 6. 机器人:各类机器人中的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 从通用大模型搭建一款智能体,可参考以下流程: 本智能体的实现包含 3 个工作流和 6 个图像流,整体包含 171 个节点。采用单 Agent 管理多工作流策略,流程包括: 1. 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集产品关键信息。 2. 卖点提炼与优化:运用先进的大模型分析信息,提炼具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将卖点转化为消费者视角的买点,增强产品吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:将处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-04
ai通用概念
以下是关于 AI 通用概念的详细介绍: 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 对于 AI 的定义,目前没有普遍共识的通用定义。我们将 AI 定义为具有以下两个产生定制监管响应需求的特征: “适应性”:使解释系统结果的意图或逻辑变得困难。 “自主性”:使为结果分配责任变得困难,一些 AI 系统可以在没有人类明确意图或持续控制的情况下做出决策。 更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下:(此处未提供相关地址信息)
2024-11-20
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法包括平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。其中 MOS 评测较为宽泛,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价标准,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果易受干扰,如音频样本呈现形式、有无上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行测评,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包两种,实验室方式能稳定保证实验环境,但人力成本高;众包方式易于获得有效评估结果,但无法确保试听条件。
2024-11-20
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法有平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。MOS 评测较为灵活,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟(ITU)将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果受干扰因素多,如音频样本呈现形式、上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包,实验室方式能控制测试要素,但人力成本高;众包易于获得评估结果,但无法确保试听条件。
2024-11-20
什么是通用人工智能素养?
通用人工智能素养是一个较为宽泛的概念,涵盖多个方面。 从相关报告来看,通用人工智能的能力包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。例如,GPT4 的主要优势在于其出色的自然语言能力,能生成流畅连贯的文本,进行多种文本操作,还能理解复杂思想。在编程和数学能力方面,这是理性思考和抽象思维能力的体现。 在法律和医学等专业领域,GPT4 也展现出一定的普遍推理能力。同时,通用人工智能素养的提升还包括促进对从事人工智能开发、操作和使用人员的素养提升,促进人工智能系统设计的包容性和多样性,评估并最大限度减少人工智能系统的影响,以及预防其对弱势人员或群体的负面影响等。
2024-11-10
我想要参加正大杯,请问我需要什么素养和能力?有什么好用的ai工具推荐吗?
参加正大杯所需的素养和能力可能包括: 1. 创新思维能力:能够提出新颖独特的想法和解决方案。 2. 问题解决能力:善于分析问题,并找到有效的解决途径。 3. 团队协作能力:与团队成员良好沟通、合作,共同完成任务。 4. 数据处理和分析能力:对相关数据进行准确处理和深入分析。 目前在 AI 领域,一些好用的工具如: 1. ChatGPT:具有强大的语言理解和生成能力。 2. DALL·E2:在图像生成方面表现出色。 但具体选择哪种工具,还需根据您的具体需求和使用场景来决定。
2024-10-20
AI素养
AI 素养包括以下方面: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,AI 的“智能”特质体现了机器模拟、扩展甚至超越人类智能的能力,其核心在于处理信息、与环境互动、专注于任务和深度学习的能力。具体表现为: 定义和特点:涵盖机器的学习、推理、适应和自我改进的能力,具有算法驱动的决策过程、对大数据的处理能力、在特定任务中的高效性和准确性等关键特点。 行为模式: 信息处理:通过先进的算法和计算模型处理信息,从大量数据输入中学习规律、做出预测并做出决策。 环境互动:能够适应操作环境,在特定环境中高效工作,并对新情况做出适应。 能量聚焦:在执行设计的任务时展现出极高的效率,持续工作而不受疲劳影响。 深度与专注:采用深度学习技术的 AI 系统能够对特定领域的数据进行深入分析,识别复杂的模式和关系。 AI 的“智能”特质在模拟和扩展人类智能的过程中,与 MBTI 中的内倾特质存在相似和可比性,为两者的结合和相互作用提供了丰富的可能性。
2024-10-18
当下最适合大学生使用的AI是哪个
当下适合大学生使用的 AI 应用有很多,以下为您列举部分: 在语言学习方面,有像这样能够实时交流并给予发音或措辞反馈的 AI 驱动的语言老师。 数学学习方面,等应用可以指导学生解决数学问题。 历史学习方面,通过模拟与杰出人物的聊天来教授历史。 写作方面,Grammarly、等工具帮助学生克服写作难题,提升写作水平。 处理其他形式内容方面,协助创建演示文稿。 此外,了解更多关于可能对您有所帮助。
2024-12-19
帮我想想三年内有争议有公众性时效性的新闻评议选题,关于无人驾驶的,贴近生活,有新意。 例子:《强制加班不应该成为企业文化》《不敢看体检报告,是我们这一代人的命吗》《理发师因听得懂话爆火,这份作业值得抄》《“网红探墓”别“自挖坟墓”》《大学生挂科8门后离奇失踪,学校有责任吗》《不招疫情班应届生,一种赤裸裸的求职歧视》
以下是为您提供的一些关于无人驾驶三年内有争议、有公众性时效性且贴近生活、有新意的新闻评议选题: 1. 《无人驾驶汽车事故频发,谁来负责?》 2. 《无人驾驶能否解决城市交通拥堵难题?》 3. 《无人驾驶普及,传统司机将何去何从?》 4. 《无人驾驶技术,是便利还是安全隐患?》 5. 《无人驾驶车辆的隐私保护,你放心吗?》 6. 《无人驾驶时代,驾照是否会成为历史?》 7. 《无人驾驶汽车的保险政策,公平吗?》 8. 《无人驾驶上路,行人安全如何保障?》 9. 《无人驾驶出租车,你敢坐吗?》 10. 《无人驾驶公交,能否改变城市出行方式?》
2024-12-05
请帮我推荐几个适合大学生线上用ai的赚钱方式,可以赚个零花钱
目前适合大学生线上利用 AI 赚取零花钱的方式有以下几种: 1. 利用 AI 进行内容创作,比如为一些网站或自媒体撰写文章、创作故事等,并通过稿费获取收入。 2. 借助 AI 辅助设计,为有需求的客户制作海报、宣传单页等设计作品。 3. 运用 AI 参与数据标注工作,帮助企业或机构对大量数据进行分类和标注。 4. 利用 AI 开发简单的应用程序或小程序,通过提供服务获取收益。 需要注意的是,在利用 AI 赚钱的过程中,要遵守法律法规和道德规范,确保所从事的活动合法合规。
2024-12-03
写一份给大学生去新加坡游学的8天方案,有3天在NUS上课,课程主题:人工智能,参访4家相关高科技企业,其中包括阿里一天的培训
以下是为大学生设计的一份去新加坡游学 8 天的方案: 第一天:出发与抵达 从出发地乘坐飞机抵达新加坡樟宜机场。 入住酒店,稍作休息,适应时差。 第二天:NUS 课程第一天 上午:参加 NUS 关于人工智能的课程,了解人工智能的基础概念和发展趋势。 下午:与授课教师和同学进行交流和讨论,加深对课程内容的理解。 第三天:NUS 课程第二天 上午:继续 NUS 的人工智能课程,学习人工智能的技术应用和实际案例。 下午:分组进行项目实践,将所学知识应用到实际问题中。 第四天:NUS 课程第三天 上午:完成 NUS 课程的最后部分,进行课程总结和成果展示。 下午:参观新加坡的一家高科技企业,了解其在人工智能领域的创新成果和运营模式。 第五天:高科技企业参访 上午:参访第二家高科技企业,与企业专家交流,了解行业前沿动态。 下午:参加企业组织的研讨会,探讨人工智能在该企业的具体应用和未来发展方向。 第六天:高科技企业参访与培训 上午:参访第三家高科技企业,深入了解其研发流程和市场策略。 下午:前往阿里进行一天的培训,学习阿里在人工智能方面的先进经验和技术。 第七天:高科技企业参访与文化体验 上午:参访第四家高科技企业,对比不同企业在人工智能领域的特点和优势。 下午:自由活动,体验新加坡的城市文化和生活方式。 第八天:返程 收拾行李,办理退房手续。 前往机场,乘坐飞机返回出发地。 在整个游学过程中,要注意安排好交通、餐饮和住宿等方面的事宜,确保学生的安全和舒适,让学生能够充分学习和体验。
2024-12-03
我是零基础的大学生,希望学习 ai 视频制作,我应该如何开始?
对于零基础的大学生希望学习 AI 视频制作,可以参考以下步骤开始: 1. 准备视频内容: 先准备一段视频中播放的内容文字,可以是产品介绍、课程讲解、游戏攻略等。也可以利用 AI 生成这段文字。 2. 制作视频: 使用剪映 App 进行简单处理。电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,添加文字内容轨道。 在界面右侧将准备好的文字内容替换默认文本内容。 此外,还可以参考以下更全面的流程: 项目规划:确定短片主题和目标观众,制定详细的制作计划。 剧本创作:编写故事脚本,设计角色和场景以及创意。相关剧本创作资料可参考:https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e ;捏剧本 Bot(捏剧本离谱村专用 https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 ) 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 后期剪辑:添加音效、配音和字幕,进行最终的剪辑和合成。 发布和推广:将完成的动画短片发布到各大平台,并进行推广和宣传。 同时,您还可以观看相关课程回放获取更多知识和经验,例如: 10 月 16 日 20:00 的“AI 视频创作指南商业片制作”课程回放(https://www.bilibili.com/video/BV1j2mTYrEsw/?spm_id_from=333.999.0.0),相关资料有:老师课件: 。
2024-12-01
大学生最适合用的AI产品
以下是为大学生推荐的一些 AI 产品: 在教育方面: 语言学习:像这样的应用能够实时交流,并对发音或措辞给予反馈。 数学学习:可以指导学生解决数学问题。 历史学习:通过模拟与杰出人物的聊天来教授历史。 写作辅助:Grammarly、帮助学生克服写作难题,提升写作水平。 演示文稿创建:协助创建演示文稿。 写简历方面: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 需要注意的是,以上推荐带有强烈主观性,只给大家一些参考意见。有些我个人感觉不好用/不常用/没用过的产品就不在推荐范围内。同时,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-28