AI 的回答通常来自以下过程:
此外,RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,由检索器和生成器组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。
在生成式 AI Studio 中,每次向模型发送请求时都会应用上下文。例如,可定义场景并告诉 AI 如何响应查询,还能通过调参数和设计提示来影响回答。同时,Google 提供了 API 和 SDK 帮助构建应用程序。对于大型语言模型,可通过调整来提高响应质量。提示是传递给模型的文本输入,及时的设计允许快速试验和定制,但制作提示可能存在措辞或词序影响结果等问题。
其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
10:32或响应格式。每次向模型发送请求时都会应用上下文。举个简单的例子,你可以定义一个场景,告诉AI如何响应help desk10:42查询。你的名字是罗伊。您是IT部门的技术支持人员。你只会回应“你试过把它关掉然后再打开吗?”任何查询。10:52可以在右边调参数,和设计提示时一样。要查看它是如何工作的,您可以在聊天框中键入我的电脑速度很慢,然后按回车键。11:02AI回应:你试过关掉它然后再打开吗?就像您告诉AI做的那样。很酷的是,Google提供了API和SDK来帮助您构建自己的应用程序。11:15您只需单击查看代码即可。首先,您需要下载适合您的编程语言(例如Python和Curl)的Vertex AI SDK。SDK代表软件设计工具包。11:26他们实现功能并为您完成工作。您可以像从代码中调用库一样使用它们。然后,您按照示例代码和API,将代码插入到您的应用程序中。11:38现在让我们看一下第三个特性,调整一个语言模型。如果您一直在使用大型语言模型制作原型,您可能想知道是否有一种方法可以提高响应质量,而不仅仅是提示设计。11:48因此,让我们学习如何调整大型语言模型以及如何从Generative AI Studio启动调整作业。快速回顾一下,提示是您传递给模型的文本输入。11:59您的提示可能看起来像一条指令……也许您会添加一些示例……然后将此文本发送到模型,以便它采用您想要的行为。12:09及时的设计允许快速试验和定制。而且由于您没有编写任何复杂的代码,因此您无需成为ML专家即可开始使用。但是制作提示可能很棘手。12:20措辞或词序的微小变化可能会以无法完全预测的方式影响模型结果。而且您无法真正将所有那么多示例放入提示中。
看理论有点懵是吗?为了更加具象化,我们来一起看看,让我询问AI一个问题时,经历了什么。这是调试预览中的对话示例。在回复中,可以看到这里有写11条引用,3条上下文,我们具体来看下,有什么处理。一、知识库检索部分:1、把输入的问题,通过Embedding做了向量化2、使用qwen语言模型把问题做了优化、添加了接近的检索词3、知识库向量检索,抽取条件包含相似度0.854、通过检索一共抽取出了11个内容块(chunk)二、大模型对话部分(因为我刷新后丢失了记录,改成说了一句:你好,所以下边的问题,变成了你好)5、此处将①②一起传递给了LLM(大语言模型),最终得到了AI的回答。①System:我设置的Prompt(提示词)②Human:知识库检索的到的信息(下图两个<data>中间的内容就是知识库检索到的信息)。③AI:最终收到的回复信息。现在再来看这四步操作,是否对“知识库+LLM”的问答流程会有更加清晰地认知呢?①、问题解析阶段②、知识库检索阶段③、信息整合阶段④、大模型生成回答如果我们要对最后的输出结果进行优化,那么只需要从这些环节中入手优化即可。接下来我们开始一起实操,对每一个环节进行优化。