Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI给我的回答来自于哪里

Answer

AI 的回答通常来自以下过程:

  1. 知识库检索部分:
    • 将输入的问题通过 Embedding 做向量化。
    • 使用语言模型对问题进行优化,并添加接近的检索词。
    • 进行知识库向量检索,抽取条件包含相似度 0.85,最终抽取 11 个内容块(chunk)。
  2. 大模型对话部分:
    • 将问题解析、知识库检索到的信息一起传递给大语言模型(LLM),最终得到 AI 的回答。
    • 整个问答流程包括问题解析阶段、知识库检索阶段、信息整合阶段和大模型生成回答阶段。若要优化回答结果,可从这些环节入手。

此外,RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,由检索器和生成器组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。

在生成式 AI Studio 中,每次向模型发送请求时都会应用上下文。例如,可定义场景并告诉 AI 如何响应查询,还能通过调参数和设计提示来影响回答。同时,Google 提供了 API 和 SDK 帮助构建应用程序。对于大型语言模型,可通过调整来提高响应质量。提示是传递给模型的文本输入,及时的设计允许快速试验和定制,但制作提示可能存在措辞或词序影响结果等问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

9. 生成式 AI Studio 简介

10:32或响应格式。每次向模型发送请求时都会应用上下文。举个简单的例子,你可以定义一个场景,告诉AI如何响应help desk10:42查询。你的名字是罗伊。您是IT部门的技术支持人员。你只会回应“你试过把它关掉然后再打开吗?”任何查询。10:52可以在右边调参数,和设计提示时一样。要查看它是如何工作的,您可以在聊天框中键入我的电脑速度很慢,然后按回车键。11:02AI回应:你试过关掉它然后再打开吗?就像您告诉AI做的那样。很酷的是,Google提供了API和SDK来帮助您构建自己的应用程序。11:15您只需单击查看代码即可。首先,您需要下载适合您的编程语言(例如Python和Curl)的Vertex AI SDK。SDK代表软件设计工具包。11:26他们实现功能并为您完成工作。您可以像从代码中调用库一样使用它们。然后,您按照示例代码和API,将代码插入到您的应用程序中。11:38现在让我们看一下第三个特性,调整一个语言模型。如果您一直在使用大型语言模型制作原型,您可能想知道是否有一种方法可以提高响应质量,而不仅仅是提示设计。11:48因此,让我们学习如何调整大型语言模型以及如何从Generative AI Studio启动调整作业。快速回顾一下,提示是您传递给模型的文本输入。11:59您的提示可能看起来像一条指令……也许您会添加一些示例……然后将此文本发送到模型,以便它采用您想要的行为。12:09及时的设计允许快速试验和定制。而且由于您没有编写任何复杂的代码,因此您无需成为ML专家即可开始使用。但是制作提示可能很棘手。12:20措辞或词序的微小变化可能会以无法完全预测的方式影响模型结果。而且您无法真正将所有那么多示例放入提示中。

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

看理论有点懵是吗?为了更加具象化,我们来一起看看,让我询问AI一个问题时,经历了什么。这是调试预览中的对话示例。在回复中,可以看到这里有写11条引用,3条上下文,我们具体来看下,有什么处理。一、知识库检索部分:1、把输入的问题,通过Embedding做了向量化2、使用qwen语言模型把问题做了优化、添加了接近的检索词3、知识库向量检索,抽取条件包含相似度0.854、通过检索一共抽取出了11个内容块(chunk)二、大模型对话部分(因为我刷新后丢失了记录,改成说了一句:你好,所以下边的问题,变成了你好)5、此处将①②一起传递给了LLM(大语言模型),最终得到了AI的回答。①System:我设置的Prompt(提示词)②Human:知识库检索的到的信息(下图两个<data>中间的内容就是知识库检索到的信息)。③AI:最终收到的回复信息。现在再来看这四步操作,是否对“知识库+LLM”的问答流程会有更加清晰地认知呢?①、问题解析阶段②、知识库检索阶段③、信息整合阶段④、大模型生成回答如果我们要对最后的输出结果进行优化,那么只需要从这些环节中入手优化即可。接下来我们开始一起实操,对每一个环节进行优化。

Others are asking
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
扣子AI应用发布到微信小程序中失败
扣子 AI 应用发布到微信小程序中失败可能有以下原因及解决办法: 1. 容器编排不运行: 宝塔面板中设置加速镜像不生效需安,通过命令行手动设置。 新建/etc/docker/daemon.json 文件(如果已经存在可以不用创建)。 在 daemon.json 中添加相应代码。 重启 Docker 服务:systemctl restart docker。若仍无法解决,可继续排查。 2. 本地镜像的方法: 服务下载:服务的百度网盘地址:https://pan.baidu.com/s/1Ueyp6KnOmD18h6wICwJKNg?pwd=85jv 提取码:85jv ;服务的夸克网盘地址:https://pan.quark.cn/s/189b6f3e0d94 。需要把 chatgptonwechat.tar 和 coze2openai.tar 下载到本地。 上传服务:在宝塔操作面板中点击文件,选择上传下载到本地的文件。上传到根目录/www/backup 文件夹下面。 导入镜像:选择 Docker 中选择本地镜像,然后选择导入镜像。导入镜像要选择上传的目录,如根目录/www/backup 。 3. 修改参数不生效:需要删掉“容器编排”和“容器”中的内容,再重新生成一次。 4. 知识库不更新:确认扣子里有点击右上角的发布按钮。 5. 微信机器人无法正常画图,给的图片链接点进去有错误提示:查看/root/chatgptonwechat/run.log 中有相关提示。可能是点链接的时候多了一个小括号。 6. 扫码后,手机登陆后,没有任何机器人的反应:配置有错错误,或者安装不对,根据步骤去逐一检查。或者重装。 7. 机器人回答问题:COW 本身处理不了一次调取多个对话。有代码能力,可以直接调整代码实现。 8. 宝塔之后登录的时候登录不上去:按下图所示重启服务器之后就好了,重启时间可能会久,但一定会重启成功,请耐心等待。 此外,零基础模板化搭建 AI 微信聊天机器人的步骤如下: 1. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: Coze 相关配置: 创建 Coze API 令牌:进入到,点击左下角的扣子 API 选项,进入到 API 管理页面,点击 API 令牌,按照图示创建第一个 API 令牌,创建成功后保存好,因为这个 API 令牌只会在创建成功后显示一次。 记下 Coze AI Bot 的 Bot ID:去到要绑定的 AI Bot 的设计界面,在所在的链接里面记下 Bot ID,将 Bot 发布到 Bot as API 上。
2025-02-18
剪辑和拍摄两个岗位 会不会被ai取代
目前的观点认为,剪辑和拍摄岗位不太可能被 AI 完全取代。例如,在相关法律法规的《促进创新的人工智能监管方法》中提到,AI 会对工作方式起到补充作用而非完全替代或破坏。在现代工作中,AI 有可能将人们从单调任务中解放出来,让人们有更多时间从事专业训练相关的工作。 同时,在好莱坞的现状中,尽管 AI 在电影制作中已被广泛使用,但也引发了一些争议。如在一些电影中使用生成式 AI 工具制作的图像引发了观众不满,但也有观点认为如果有适当保护措施,AI 可以创造就业机会。 另外,有预测称 2025 年将有 10 亿用户级 AI 助理诞生,AI 可能会取代部分岗位,但也会创造新的工程机会。
2025-02-18
我要做一个关于ai赋能社会组织的线上培训
以下是关于 AI 赋能社会组织线上培训的相关信息: 社区 AI 讲师招募: 招募背景:随着 AIGC 技术的快速发展,传统企业亟需通过 AI 转型实现降本增效与业务创新。工信部大数据产业人才基地计划为传统行业客户提供 AI 技术培训等服务,现面向社区招募具备实战经验的 AI 讲师与咨询专家。 涉及业务: 公开课:针对 B 端渠道持续展开公益科普,形式免费,部分渠道有经费,内容包括企业端的 AI 应用场景案例和 AI 通识类科普分享,目的是建立与企业渠道的信任及构建收费培训/咨询的转化通道。 线下培训:通过培训转化或直接招生,分成两天一夜、三天两夜的培训班,50 人以上开班,建议 100 人。 咨询服务:针对企业的咨询陪跑服务,包括 AI 营销能力搭建等。 近期安排: 商会公开课:时间暂定 2.22 日,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 重庆区域公开课:时间暂定 2.9 日,线上直播,用户群体是重庆地区相关领导,公开课主题为《Deepseek 引发的商业思考》。 民营经济大讲堂:时间与讲师团商量调整,线下付费,需评估讲师资历和案例,主题包括但不限于 AI 通识培训、AI 企业增长打法等。 省商会公开课:时间待定,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 SaaS 平台企业公开课:时间待定,线上直播,用户是 SaaS 平台上的企业,主题待定。 杭州市城投线下培训:时间 2 月底,针对城投内部线下培训,付费,主题可与讲师商量。 万人期待的字节 Trae Windows 版正式推出,免费: 重磅福利: AI 编程重磅直播:会邀请在 AI 编程领域取得成绩的嘉宾深度交流,由黄叔亲自主持,还邀请了 Eric 等嘉宾。 AI 编程训练营:WaytoAGI 和 AI 编程社推出为期 2 周左右的共学营,包含图文教程、视频、直播,社群内有老师答疑,完全免费。 相关链接:Trae Windows 版本已经上线,Mac 版本也可下载,官网地址:https://www.trae.ai/
2025-02-18
图片转视频的国产AI推荐
以下是为您推荐的国产图片转视频的 AI 工具: 1. 可灵:由快手团队开发,生成的图像和视频质量高。在视频生成方面,其视频生成质量卓越,画面清晰、连贯且内容丰富,生成速度快,对于国内用户可访问性强。但价格相对较高,重度用户年费可能达几千元,轻度用户有免费点数和较便宜的包月选项。 2. 通义万相:作为国产 AI 工具,在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可。但为符合国内监管要求,某些类型图像无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。 更多相关网站可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-02-18
图片转视频的AI推荐
以下是为您推荐的图片转视频的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,在视频转绘制作视频过程中,Topaz Video AI 是一个不错的插件,用于消除视频抖动和运动模糊。其使用方法如下: 解压对应文件,推荐使用绿色版,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频。主界面左边是原视频,右边是待处理视频,下面是对应的视频轨道。右边部分是主要对视频处理的方式,预设部分主要是放大视频、提升画质、提升帧率等。稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 左右,抖动需要开启,次数一般选择 2 保持默认不变。 在制作新年表情包时,生成新年场景可以输入关键词“新年、中国新年、喜庆热闹、恭喜发财”之类的词汇得到合适的新年背景。然后使用可灵 AI 1.6 图生视频工具让场景动起来,抽卡性价比不错,简单效果一般抽两三次即可。
2025-02-18
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
有哪些主流的大模型?用英文回答
The mainstream large models include: OpenAI: GPT3.5 and GPT4. GPT3.5 initiated the current AI boom in November, and GPT4 was first released in spring with more powerful functions. A new variant uses plugins to connect to the internet and other applications. Microsoft's Bing uses a mixture of GPT4 and GPT3.5 and is often the first to introduce new features in the GPT4 family. Google: Bard, driven by various base models, recently a model named PaLM 2. Anthropic: Claude 2, which is notable for having a very large context window.
2025-02-13
如何让纳米ai的Deepseek接口回答的更加精确
要让纳米 AI 的 DeepSeek 接口回答更加精确,可以从以下几个方面入手: 1. 强化学习策略:在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。其中准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 2. 注重细节和语气:DeepSeek 在回答时能够还原特定的语气,如帝王的语气,且对历史细节熟悉,兼顾可读性。同时,输出充满具体而惊人的细节,行文的隐喻拿捏到位,高级且能准确传达含义。 3. 结合深度探索和联网搜索:这可能有助于获取更全面准确的信息,从而提高回答的精确度。
2025-02-12