Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你现在是一个特别厉害的预言家,告诉我ai什么时候能统治世界

Answer

目前关于 AI 何时能统治世界尚无确切定论。但从相关研究来看,各国已将 AI 上升为国家战略,视其为下一代全球竞争的制高点。如果某一国家率先突破真正的 AGI,其国际地位和影响力或将急剧攀升。例如俄罗斯总统普京曾警告“谁在人工智能上领先,谁就能统治世界”。

AGI 实现后可能会在未来 20 年给人类社会带来多方面的变革。在经济与社会结构方面,AGI 可能带来生产力的爆炸式增长,同时导致大规模技术性失业,财富可能更多地集中于拥有 AGI 资本的少数人。在文化、价值观与信仰方面,AGI 将挑战人类对智能与意识的认知,引发对“人之为人”意义的新思考,人类价值观可能在科学理性与精神信仰之间重新定位。在政治与权力结构方面,AGI 可能重塑全球权力版图,拥有先进 AI 的国家和跨国企业将获得前所未有的影响力,可能出现“AI 寡头”新统治阶层,引发社会分化,各国还可能陷入 AGI 军备竞赛。

此外,有观点认为 2045 年,人工智能将超越人类智能,届时人类的知识、思考能力等将发生巨大变化。但目前这仍只是一种预测。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究] Deep Research - AGI 实现后未来 20 年人类社会的变革

例如,知名的预测之一是:“谁在人工智能上领先,谁就能统治世界。”俄罗斯总统普京在2017年曾发出这样的警告[brookings.edu](https://www.brookings.edu/articles/whoever-leads-in-artificial-intelligence-in-2030-will-rule-the-world-until-2100/#:~:text=A%20couple%20of%20years%20ago%2C,won%E2%80%99t%20do%2C%20and%20even%20two)。从地缘政治看,各国已将AI上升为国家战略,视其为下一代全球竞争的制高点。如果某一国家率先突破真正的AGI,其国际地位和影响力或将像冷战时期拥核国家那样急剧攀升。报告显示,目前美国和中国在AI竞赛中处于领先,欧洲紧随其后,各方都不愿在这一决定未来百年格局的领域落后。因此,AGI很可能引发新一轮军备竞赛或科技竞赛,各国投入巨资研发,希望成为“首先登上AGI高地”的力量。在这种背景下,国际关系将充满紧张,不仅是经济利益,还有对安全和生存的担忧——谁都不愿意他国独占AGI带来的绝对优势。

[趋势研究] Deep Research - AGI 实现后未来 20 年人类社会的变革

本报告详细探讨了当人工通用智能(AGI)实现后未来20年人类社会可能经历的剧烈变革。AGI将从经济、文化到政治权力结构等各方面深刻影响人类文明的发展。本报告的核心要点包括:[heading3]经济与社会结构[content]AGI可能带来生产力的爆炸式增长,同时导致大规模技术性失业。人类劳动力的价值将被重新评估,财富可能更多地集中于拥有AGI资本的少数人。为应对失业和不平等,加速建立新的财富分配机制(如全民基本收入)或社会安全网成为必要。全球范围内,发达国家凭借AGI巩固优势,新兴经济体因廉价劳动力优势消失或将面临发展瓶颈。[heading3]文化、价值观与信仰[content]AGI将挑战人类对智能与意识的认知,引发对“人之为人”意义的新思考。随着机器展现类似人类的智能和创造力,人类独特性的传统观念可能动摇。宗教和伦理也将面临冲击:部分宗教团体或视AGI的创造为“扮演上帝”而予以批判;也有新兴运动试图将超级AI神格化,例如曾出现“未来之路”教会试图崇拜AI为神明。整体而言,人类价值观可能在科学理性与精神信仰之间重新定位。[heading3]政治与权力结构[content]AGI可能重塑全球权力版图。拥有先进AI的国家和跨国企业将获得前所未有的影响力。正如俄罗斯总统普京所言:“谁在人工智能领域领先,谁就能统治世界”​。政府与科技巨头的关系将更加微妙,或出现“AI寡头”新统治阶层,引发社会分化。国际层面,各国可能陷入AGI军备竞赛,同时也催生建立全球AI监管机构(类似于核监管机构IAEA)的呼声。全球治理需要在安全与竞争间取得平衡,以避免陷入失控的军备竞赛和安全困境。

0. 从这里启程

|书名|作者|出版年份|简介|封面|豆瓣链接|豆瓣评分|标签||-|-|-|-|-|-|-|-||《人工智能的未来》|Jeff Hawkins|2016|1.《人工智能的未来》作者库兹韦尔认为,2045年,人工智能将超越人类智能,储存在云端的“仿生大脑新皮质”与人类的大脑新皮质将实现“对接”,世界将开启一个新的文明时代,“奇点”到来!那个时候,我们是谁?我们是什么?人还能称之为人吗?<br>2.库兹韦尔把“奇点”当作一个绝佳的“隐喻”:当智能机器的能力跨越这一临界点之后,人类的知识单元、链接数目、思考能力,将旋即步入令人眩晕的加速喷发状态——一切传统的和习以为常的认识、理念、常识,将统统不复存在,所欲的智能装置、新的人机复合体将进入“苏醒”状态。<br>3.库兹韦尔通过对人类思维本质的全新思考,大胆地预言了人工智能的未来。他坚信,未来人类一定会制造出可与人脑相媲美的“仿生大脑新皮质”。它们甚至比人脑更具可塑性,并可放置在云端,与遥远的人类生物大脑远程相连。那时,或许人工智能真的能够与人类相媲美!||[https://book.douban.com/subject/1834728/](https://book.douban.com/subject/1834728/)|7.2|思考未来|

Others are asking
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
AI名词解释
以下是一些常见的 AI 名词解释: Compute:用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN:卷积神经网络,一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。此类模型通常用于图像识别任务。 Data Augmentation:通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent:机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning:一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems:人工智能技术的应用,为特定领域的复杂问题提供解决方案。 Agents:智能体,一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像 ChatGPT 这样的工具中“通常”的使用方式不同。在 ChatGPT 中,你提出一个问题并获得一个答案作为回应。而 Agent 拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。 ASI:人工超级智能,尽管存在争议,但 ASI 通常被定义为超越人类思维能力的人工智能。 Attention:在神经网络的上下文中,注意力机制有助于模型在生成输出时专注于输入的相关部分。 Bias:AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot:一种计算机程序,旨在通过文本或语音交互模拟人类对话。聊天机器人通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP:对比语言图像预训练,由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 TPU:张量处理单元,谷歌开发的一种微处理器,专门用于加速机器学习工作负载。 Training Data:用于训练机器学习模型的数据集。 Transfer Learning:机器学习中的一种方法,其中对新问题使用预先训练的模型。 Validation Data:机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。它用于调整模型的超参数(即架构,而不是权重)。 Knowledge Distillation:数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。数据蒸馏技术在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。它可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。 RAG:检索增强生成。
2025-04-18
可以增强图片清晰的的ai
以下是一些可以增强图片清晰度的 AI 工具: 1. Magnific:https://magnific.ai/ 2. ClipDrop:https://clipdrop.co/imageupscaler 3. Image Upscaler:https://imageupscaler.com/ 4. Krea:https://www.krea.ai/ 更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17 此外,PMRF 也是一种全新的图像修复算法,它具有以下特点: 擅长处理去噪、超分辨率、着色、盲图像恢复等任务,生成自然逼真的图像。 不仅提高图片清晰度,还确保图片看起来像真实世界中的图像。 能够应对复杂图像退化问题,修复细节丰富的面部图像或多重损坏的图片,效果优质。 详细介绍: 在线体验: 项目地址: 这些 AI 画质增强工具都具有不同的特点和功能,可以根据您的具体需求选择合适的工具进行使用。
2025-04-18
怎样使用AI做PPT
使用 AI 做 PPT 可以参考以下内容: 1. 信息的 AI 可视化: 优点:节省制作时间、具有优秀的视觉风格、能快速归纳整理信息、可用图形代替文字枯燥的表达。 注意事项: 不要指望复制一段提示词就能得到满意结果,这是与 AI 互动的过程,需要反复尝试。 AI 生成的是基于模型的 HTML 输出,并非真正的 PPT 格式,目前无法在 PPT 里进行二次深度编辑。 模型选择:目前推荐 Claude 3.7 Sonnet,可通过 POE 调用,不建议使用其他效果不佳的模型。 交互流程: 阶段 1 主观描述:通过文字聊天让 Claude 领悟您想要的视觉风格,描述要尽量具体,如颜色、画布、装饰等方面的要求。 2. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀团队推出,可通过输入文本描述生成专业设计。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的辅助工具,提供智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。https://zhiwen.xfyun.cn/ 3. 教学案例: 上午的尝试中,Claude + Gamma.app 帮助学生从组会准备工作中解放出来,实现了快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并学会使用等目的。 Claude 的用法示例:如通过一系列问题让其搜索权威期刊、论文,提取摘要等,并用于制作 PPT。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
你有知道那些做AI比较厉害的培训课程
以下是一些比较厉害的 AI 培训课程: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 由白马老师和麦菊老师带领的 AI 星图及相关创作课程,包括毛毡字、光影字、机甲字等。 16 号晚上中老师会带领的炼丹操作课程,炼丹需提前准备一些图,老师会提前发布内容让大家准备。 关于 AI 文旅视频的课程,几位老师带来了干货课程,工作流开源,学习后可制作类似视频。 高效 PB 及相关案例课程,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动的新的 AI 视频主题课程。 AI 音乐相关课程,有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 以下是一些其他的课程资源: 一位投资人推荐的课程: MIT Deep Learning: Stanford CS 324Advances in Foundational Models: The Full Stack LLM Bootcamp: 野菩萨的课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果想要免费获得野菩萨的课程,可以来参与 video battle,每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-04-01
你们ai什么时候能统治世界
目前,关于 AI 统治世界的问题尚无确切定论。从一些研究和观点来看,各国已将 AI 上升为国家战略,视其为下一代全球竞争的制高点。例如俄罗斯总统普京曾在 2017 年发出警告,称“谁在人工智能上领先,谁就能统治世界”。目前美国和中国在 AI 竞赛中处于领先,欧洲紧随其后,各方都在大力投入研发,AGI 有可能引发新一轮军备竞赛或科技竞赛。 但也有观点认为,AI 大概率会成为人类的助手而不是世界的主宰。人类拥有独特的创造力,其进化几百万年沉淀的经验刻在基因中、记录在历史中,这是人类宝贵的资产。同时,像 Junie 表示“Skynet 不会统治世界,人类的创造力永远不会被机器所取代”,AI 电影的出现也只是为观众提供了更多选择,而不是取代传统。
2025-04-09
ai会统治人类吗
目前关于 AI 是否会统治人类存在多种观点和讨论。 一方面,从一些分析来看,AI 正朝着智能体的方向演化,大概率会成为人类的助手而非世界的主宰。人类拥有进化几百万年沉淀的经验,具有独特的创造力,知道自己想要什么以及什么是有趣的。智能的供应会像电力供应一样渗透到全行业和生活的方方面面。 另一方面,也有人认为,如果 AGI 不加以控制,可能会导致人类灭亡;但也有人认为现有的架构即便扩展算力,也根本实现不了 AGI。媒体报道上充满了各种矛盾且对立的观点。例如,Amazon 的创始人 Jeff Bezos 做了形象的比喻,认为大语言模型的智能像是被召唤出来的。对复杂神经网络内隐藏秘密的研究才刚开始,如何使用和控制这些黑箱模型是业界和社会争论最激烈的话题。 此外,还有文章探讨了 AI 统治人类的可能性,分析了 ChatGPT 对工作表现的影响以及技术变革导致生产资料重新分配,少数人控制大多数资源的情况。
2024-08-15