Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有没有能够按照给定的文件出考试题的智能体或者网站或者AI

Answer

以下是一些能够按照给定文件出考试题的智能体、网站或 AI 相关的信息:

  • 很多 AI 网站都可以创建“智能体”,您可以为其提供配置信息(提示词)、知识库、能力配置等,让它们为您工作,例如出试题。
  • 像 Perplexity 这样的平台,具有付费、高质量的特点。
  • 利用 Kimi.ai 也可以实现用 AI 出测验题,提升的办法如出 20 道,挑几道出来改改,或者让 AI 根据量规自动评分。

在使用这些工具时,想让 AI 做好,首先您得会做,比如把大模型当作大学生或“实习生”,需要您指明方向,拆解任务,教其一步一步操作,像导演一样编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,并且让前面每一步的结果都成为后面步骤的基础。

另外,对于 GPT 类的工具,您可以预先把咒语(prompts)写好,像编程一样把要求 AI 操作的步骤写得非常详细,以后每次拿过来直接就用。建议找个空闲日,将自己的日常工作列出来,寻找哪些工作部分可以被 AI 加速,哪些工作基本上是固定输入输出的,并尝试把这些工作场景写成“智能体”,不断迭代优化。

Content generated by AI large model, please carefully verify (powered by aily)

References

张翼然:用AI为教师减负(3H).pdf

•把⼤模型当作⼤学⽣OK,当作专家XX•“实习⽣”只能执⾏任务•需要你指明⽅向,拆解任务,教其一步一步操作•像导演一样,编排具体流程,检查结果,修改流程,反复迭代提示语的核⼼是逻辑•“所谓提示词⼯程,核⼼不是你套个什么模板⽤什么格式,⽽是逻辑!!”•逻辑就是你怎么将一个复杂的任务拆成科学合理的步骤,并且让前⾯每一步的结果都成为后⾯步骤的基础,所有步骤合并在一起得到最终的结果,⽽不要指望一步得到结果。•下次写Prompt,效果不理想时,不妨想想看:我是不是可以把这个任务拆分成⼏个步骤?怎么拆分最合理?•顺便说一下:即使你在Prompt⾥⾯指明了步骤,但是如果没有将步骤打印出来,那么也是没有效果的。因为LLM需要基于前⾯的输出结果去预测后⾯的结果,如果没有前⾯步骤的输出,就⽆法影响后⾯的预测结果。很多AI ⽹站都可以创建“智能体”如上图,给配置信息(提示词)、知识库、能⼒配置等你可以⼿搓各种机器⼈🤖,让它们为你⼯作:出试题、找资料、画插图、专业翻译...

张翼然:AI引领未来课堂的探索与实践.pdf

第三种智能[heading2]人类智能人工智能人类智能+人工智能Co-Intelligence[heading3]1.⽤ AI搜索引擎如felo.ai/search搜索并归纳内容[heading3]2.贴内容,⽤ AI可视化⼯具napkin.ai转成图示[heading4]如何效率更高的使用GPT?[content]所谓GPTs,就是你预先把咒语(prompts)写好,可以像编程一样,把要求AI操作的步骤写得非常详细,以后每次拿过来直接就用,而不必重新再写。——万维钢:三个用法,AI颠覆了我的工作流建议找个空闲日,将自己的日常工作列出来,寻找哪些工作,部分可以被AI加速。哪些工作基本上是固定输入输出的。可以尝试把这些工作场景写成“智能体”,并尝试不断迭代优化更深入的,可以规划一门课程,一次讲座,一次培训,哪些环节可以用AI完成如下图,不同老师有不同的尝试很多AI ⽹站都可以创建“智能体”如上图,给配置信息(提示词)、知识库、能⼒配置等你可以⼿搓各种机器⼈🤖,让它们为你⼯作:出试题、找资料、画插图、专业翻译...凡是你需要多次使⽤的提示词配置一个,就能反复快速使⽤,还能逐步调整优化⽣成术语解释请你扮演维基百科,为我解释下⾯的概念或定义。请以这个格式输出相应的内容:##定义##来源、出处、历史##通俗易懂的解释##⽤法举例本⼈(⾼校教师)创建/改编的AI助理

张翼然:用AI为教师减负(3H).pdf

Kimi.ai4.说明:提供更多关于任务和要求的详细具体上下文信息。3.学生能掌握课文中的重点词汇和句式,提高文言文阅读能力。3.让学生了解阿房宫的历史,理解作者借古讽今的写作3、整体感知,把握作者观点(第二课时)2、涵养济世补天的精神品格3、理解文章重要的文言文字词和语法现象。3、了解杜牧的创作主张与情怀秦岭,上海⼥三⽤AI出测验题,多快好省提升的办法是:出20道,挑⼏道出来改改⽤AI根据量规自动评分•请你扮演经验丰富的教师培训师,为实习老师的试讲语言做评价。根据以下量规,请评价一位试讲老师的试讲录音片段:

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
如何创造自己的知识库,并且能完成对给定文本的润色和修改
要创建自己的知识库并完成对给定文本的润色和修改,您可以参考以下内容: 上传方式及操作步骤 Notion 1. 在文本格式页签下,选择 Notion,然后单击下一步。 2. 单击授权。首次导入 Notion 数据和页面时,需要进行授权。 3. 在弹出的页面完成登录,并选择要导入的页面。 4. 选择要导入的数据,然后单击下一步。 5. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符 删除所有 URL 和电子邮箱地址 6. 单击下一步完成内容上传和分片。 本地文档 1. 在文本格式页签下,选择本地文档,然后单击下一步。 2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容。每个文件不得大于 20M。一次最多可上传 10 个文件。 3. 当上传完成后单击下一步。 4. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符 删除所有 URL 和电子邮箱地址 5. 单击下一步完成内容上传和分片。 在线数据 自动采集方式:该方式适用于内容量大,需要批量快速导入的场景。 1. 在文本格式页签下,选择在线数据,然后单击下一步。 2. 单击自动采集。 3. 单击新增 URL。在弹出的页面完成以下操作: 输入要上传的网站地址。 选择是否需要定期同步网站内容,如果需要选择内容同步周期。 单击确认。 4. 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:该方式适用于需要精准采集网页上指定内容的场景 1. 安装扩展程序,详情请参考。 2. 在文本格式页签下,选择在线数据,然后单击下一步。 3. 点击手动采集,然后在弹出的页面点击权限授予完成授权。 4. 在弹出的页面输入要采集内容的网址,然后单击确认。 5. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 6. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。
2025-01-02
我给定一张图片,根据这张图片的人脸特征 生成一组写真图片
以下是关于根据给定图片的人脸特征生成写真图片的相关内容: 使用 SD 进行多人物脸部替换生成写真: 先正常生成一张特定内容的图片,如两个古风人物在大漠黄沙下互相对视。正向提示词包括“best quality, official art, 8k wallpaper, highly detailed, illustration, closeup, , upper body, antique style, drifting snow, yellow sand fills the sky, withered tree, desert, gu, <lora:武侠 V2_2.0:1>”,模型使用 majicmixRealistic 及武侠 lora。将生成的图发送到图生图中,调整重绘幅度为 0.4。在 roop 插件中进行脸部替换,如载入至尊宝和紫霞的照片形象。插件强大之处在于仅凭一张照片能复刻角色其他角度和表情。最后可使用 ps 扩图。如需插件,可添加公众号【白马与少年】回复【SD】获取。 给自己做卡通头像: 1. 复杂提示词:如“Disney boy, Low saturation Pixar Super details, clay, anime waifu, looking at viewer, nighly detailedreflections transparent iridescent colors. lonctransparent iridescent RGB hair, art by Serafleurfrom artstation, white background, divine cinematic edgelighting, soft focus. bokeh, chiaroscuro 8K, bestquality.ultradetailultra detail.3d, c4d. blender, OCrenderer. cinematic lighting, ultra HD3D renderino iw 1.5 s 500 v 5”。 2. 不同照片生成:若对照片风格不满意,可更换新照片使用上述提示词重新生成。 3. 其他调整:若觉得 Disney 风格太过卡通,可将提示词中的 Disney 换成 Pixar;若为女孩,可把 boy 换成 girl。每次生成 4 张图片,对满意的某张可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 快手「可灵」和「Sora」背后的 DiT 技术: DiT 不仅训练高效,在实际应用中图像生成能力强大。输入简单文字描述即可生成逼真图像,如各种自然景观、人物肖像、动物等,甚至能细致到毛发纹理和眼神光彩。还能在图像修复方面表现出色,智能识别瑕疵并修复,如修复老照片中被遮挡的人物面部。此外,能赋予图像不同艺术风格,如将普通照片转换成梵高风格油画或改变白天夜晚效果,为图像创作和编辑提供全新可能。
2024-12-11
通过学习视频,从视频当中提取特征,然后根据给定的视频素材和要求生产视频,怎么做?
以下是从给定视频素材和要求生产视频的一般步骤: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析视频内容,提取关键场景、角色和情节。 2. 生成描述:根据分析结果,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将相关文本转换为语音,添加背景音乐和音效。 6. 视频编辑: 准备内容:先准备一段视频中播放的内容文字,可以利用 AI 生成。 选择工具:使用剪映 App 等视频编辑软件进行处理。 操作步骤:电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,添加文字内容轨道,替换默认文本内容。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在视频制作管理流程方面: 1. 剧本敲定:确保剧本内容完整,对话、场景、角色等都已经确定。 2. 制作分镜头脚本:根据剧本内容,制作详细的分镜头脚本,包括每个场景的视角、动作、表情等细节。 3. 分镜出图:为每个镜头绘制或制作相应的分镜图,每个镜头可以多出一张图,以备不时之需,或用于展示不同的视角和细节。 4. 素材管理: 图片管理:将图片按照场景或部分分别保存在不同的文件夹中,以便于管理和查找。文件夹可以命名为“场景 1”、“场景 2”等。单个图片命名为“x 场 x 镜”,例如“1 场 1 镜”表示第一场的第一镜头。 视频管理:跑视频(即制作视频素材)时,也应按照不同部分使用不同的文件夹进行管理。单个视频的命名方式与图片相同,也是“x 场 x 镜”,以保持一致性和便于对照。 5. 素材审核:在制作过程中定期审核素材,确保其符合分镜头脚本的要求,质量达标。 6. 备份存档:定期对素材进行备份,防止意外丢失,同时在项目完成后进行存档,以备后续需要时使用。
2024-10-03
什么样的智能体才是真正的智能体
真正的智能体具有以下特点和类型: 特点:能够感知环境,采取行动以实现特定目标。可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当大脑,并具备规划、反思完善、记忆和工具使用等关键组成部分。 规划:包括子目标分解和反思完善,将大型任务分解为小的子目标,并能从错误中吸取教训改进未来步骤。 记忆:有短期记忆用于上下文学习,长期记忆用于长时间保留和回忆信息,通常通过外部向量存储和快速检索实现。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息。 类型: 决策智能体:使用语言模型遍历预定义的决策树。 轨道智能体:配备更高层次的目标,限制解决空间,遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体:完全依赖语言模型的推理能力进行所有的计划、反思和纠正,没有任何数据支架的 for 循环。
2025-02-18
怎么做一个知识库智能问答机器人?
要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下: 1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。 3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。 此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。
2025-02-18
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17