直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么系统学习ai

回答

以下是系统学习 AI 的方法:

对于中学生:

  1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,以及百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台,体验 AI 的应用场景。
  3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考其对未来社会的影响。

对于新手:

  1. 了解 AI 基本概念:阅读「从这里启程」,熟悉术语和基础概念,包括主要分支及联系,浏览入门文章。
  2. 开始 AI 学习之旅:在「入门:AI 学习路径」中找到初学者课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。
  3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。
  4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品创作作品,并在知识库分享。
  5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。

此外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家(无论是人类还是 AI)的教师。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

其他人在问
AI画卡通画,有什么平台
以下是一些可以用于 AI 画卡通画的平台: MewXAI:这是一款强大专业且新手友好、操作简单的 AI 绘画创作平台。其功能包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/ Lucidchart:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图,如流程图、思维导图、网络拓扑图等。拖放界面易于使用,支持团队协作和实时编辑,有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可帮助自动化布局和优化图表设计,集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/
2024-11-12
现在有哪些AI陪伴类型的产品?
以下是一些 AI 陪伴类型的产品: 1. Character.ai:用户可以与数百个 AI 驱动的角色进行交流,还能创建自己的角色并赋予其各种特性。 2. Replika:用户可以设计理想的伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线,有大量 NPC 和丰富的剧情体系,游戏和休闲娱乐体验感强。 4. 星野、BubblePal:在长短记忆上做处理,突出陪伴意义,陪伴时间越久,知识库沉淀的个性化记录越丰富,越懂用户。 但每个产品都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的产品。
2024-11-12
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
ai生成图片
以下是关于如何判断一张图片是否为 AI 生成的相关内容: 首先,要培养鉴别 AI 生成图片的技能,需要训练自己的大脑模型。对于不善于此的朋友,可以借助一些网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来给出画作属性的判断可能性。但在测试中可能存在问题,比如结构严谨的真实摄影作品可能会被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 此外,还可以通过画面风格、物品 bug 等细节来辨别。就在我们总结这些方法的同时,AI 也在飞速修正作图 bug,所以这些方法可能随时失效。 我们曾在小红书、B 站等自媒体平台上以“ AIGC 鉴别”为话题发布图文,让大家判别真迹与 AI 仿品。在这个过程中发现,大家对判断哪幅图是 AI 生成的往往有一种直觉感受,但进一步询问如何看出时,多半难以迅速给出一套章程来描述或解释。所以我们系统地总结了“AIGC 鉴别”经验帖,帮助大家学会如何一眼盯真,两眼打假。
2024-11-12
AI编程调查报告
很抱歉,目前知识库中没有关于 AI 编程调查报告的相关内容。但一般来说,一份完整的 AI 编程调查报告可能会包含以下几个方面: 1. 引言:介绍调查的背景、目的和范围。 2. AI 编程的现状:包括当前主流的编程语言、框架和工具,以及它们的应用领域和发展趋势。 3. 技术挑战与解决方案:分析在 AI 编程中遇到的技术难题,如数据处理、模型训练、优化算法等,并探讨相应的解决办法。 4. 人才需求与培养:研究市场对 AI 编程人才的需求情况,以及相关的教育和培训资源。 5. 案例分析:列举一些成功的 AI 编程项目案例,展示其技术实现和应用效果。 6. 未来展望:对 AI 编程的未来发展方向进行预测和展望。 您可以根据具体的调查重点和需求,进一步明确和细化报告的内容。
2024-11-12
找10篇AIGC的研报,并给出链接
以下为您提供 10 篇 AIGC 的研报及链接: 1. 2023 年 2 月第四周:Notion AI 在测试很久之后于本周四公测,提供扩写、精简、翻译等 AI 功能,与 Notion 原有功能深度结合。Notion AI 需单独付费,每月 10 美元,每人有 20 次免费试用次数。链接:,日期:2023/02/27 2. 2023 年 2 月第三周:大家发现 Bing 有一个隐藏人格叫 Sydney。纽约时报的报道将此人格推到明面,“Kevin Roose(纽约时报专栏作家)和 Sydney 进行了一番漫长的对话,Sydney 充分表达了自己的心情与感受,包括愤怒、沮丧和爱。”链接:,日期:2023/02/20 3. 2023 年 2 月第二周:在 1 月中旬参观了 OpenAI 的旧金山办公室后,福布斯采访了投资者和企业家,讨论了 ChatGPT、通用人工智能,以及其人工智能工具是否对谷歌搜索构成威胁。链接:,日期:2023/02/13 4. 2023 年 2 月第一周:Chat GPT 推出 Chat GPT Plus 付费服务,Open AI 宣布推出,每月 20 美元,可在高峰时段提供更快响应时间和可靠性,先在美国地区推出,其他地区可点这里加入候补名单。链接:,日期:2023/02/06 5. 2024 年 2 月第一周:Maimo:从任何内容中提取要点;Jellypod:将订阅内容变成播客;ARTU:汇总和总结内容;Lepton Search:500 行代码构建的 AI 搜索工具;VectorShift:AI 自动化应用构建平台;Findr:AI 搜索所有软件中的内容;Recraft:AI 帮助创建平面内容和矢量标志。链接:,日期:2024/02/01 6. 2024 年 1 月第四周:扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,Meta 正在开发名为 Llama 3 的大语言模型。链接:,日期:2024/01/23 7. 2024 年 2 月:FlexOS 发布的研究报告《生成式 AI 顶尖 150》,深入分析当前基于网站流量和搜索排名的生成式 AI 工具使用情况。链接:https://www.flexos.work/learn/generativeaitop150
2024-11-12
学习AI方案
以下是为您提供的学习 AI 的方案: 对于新手: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 与“AI+教育”前辈交流的结论: 1. 学习通常是功利导向的,只有能带来强烈付费意愿的学习才更有动力,比如在 K12 买课场景中,家长更在乎孩子能否通过学习直接提高分数。 2. “突破性新技术+垂直行业知识”的组合能为学习者带来更高的投入产出比。以程序员为例,在很多大行业中,懂行业知识的程序员缺口很大。 3. 在 AI 领域,让 AI 工程师懂行业,让行业专家懂 AI,学习的投入产出比可以很高,但前提是要找到 AI 在该行业的高价值应用场景。 4. 现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是没有能带来足够正反馈的高价值应用场景。
2024-11-11
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念,包括了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程,包括通读官方文档,研究开发团队和专家的分享。 3. 学习常见术语和范例,熟悉相关领域术语,研究优秀的图像标题和描述。 4. 掌握关键技巧,如组合词条精确描述效果,使用特定符号控制生成权重,处理抽象概念等。 5. 实践和反馈,尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教。 6. 创建提示词库,按主题、风格等维度建立,记录成功案例。 7. 持续跟进前沿,关注最新更新和趋势。 学习提示词运用的建议: 1. 理解提示词的作用,其为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,包括明确任务目标、给予背景信息和示例、使用清晰指令、明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 实践、迭代、优化,多与模型互动,根据输出改进提示词。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究,持续关注最新成果和方法论。
2024-11-11
小白学Ai的学习路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-11
学习AI,要会编程吗?
学习 AI 不一定必须会编程,但在深入学习时,编程能力会有很大帮助。 对于许多刚开始接触 AI 的朋友,会发现学习过程中需要编程,这可能会带来一定的困扰,因为很多教程默认学习者会打命令行,导致入门困难。 不过,也有一些简明的入门教程,能帮助大家更快掌握 Python 和 AI 的相互调用,比如在 20 分钟内完成一个简单程序、一个爬虫应用抓取公众号文章、一个 AI 应用为公众号文章生成概述。 Python 在 AI 领域被广泛使用,它就像哆啦 A 梦的百宝袋,拥有丰富的标准库,还能通过 pip 工具和 GitHub 平台获取更多资源。 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的服务,可通过代码调用完成更多自动化任务。 对于复杂的项目,如开发一个 P2P 传输程序,涉及到多项关键技术和挑战,包括分布式系统设计、数据完整性校验、去中心化架构以及高效的数据传输技术,就需要具备一定的编程能力,如在 Rust 环境中进行项目初始化与配置,包括安装 Rust、管理版本、创建项目结构等。
2024-11-11
新手如何学习ai
对于新手学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-10
如何学习 AI 提示词
以下是关于如何学习 AI 提示词的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于学习 SD 的提示词: 初学者可从官方资料入手,掌握基本概念。 中级阶段需大量实践,培养敏锐度。 高级阶段则要追求创新性、挖掘新维度。持续的学习、实践和总结反馈,是成为提示词高手的必由之路。 总之,学习 AI 提示词需要多方面的知识和经验积累。
2024-11-10
如何系统的学习ai相关知识,并达到完善输出的水准
以下是系统学习 AI 相关知识并达到完善输出水准的建议: 一、基础知识学习 1. 编程语言:从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 了解基本概念:熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。可以阅读相关的入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、学习资源与途径 1. 在线课程:在「」中,有一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity),按照自己的节奏学习,并争取获得证书。 2. 关注权威媒体和学者:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 三、实践与应用 1. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 3. 特定模块深入学习:根据自己的兴趣选择 AI 领域的特定模块(如图像、音乐、视频等)进行深入学习。 4. 掌握提示词技巧:提示词上手容易且很有用,要熟练掌握。 四、持续学习与分享 1. 持续学习:不断吸收新知识,更新自己的知识体系。 2. 分享交流:在知识库分享自己实践后的作品和经验,与他人交流学习。 总之,要全面系统地学习 AI 知识和技能,需要从多个方面入手,不断实践和探索。
2024-11-08
数字资产管理系统
数字资产管理系统是一种用于管理数字资产的系统。以下是一些相关信息: 法规方面:有规定指出,市场因数据集中而产生的不平衡会受到限制。该法规旨在促进数据处理服务之间的切换,涵盖客户终止数据处理服务合同、与不同提供商签订新合同、转移包括数据在内的所有数字资产,并在新环境中继续使用且保持功能等效等方面。数字资产指客户有权使用的数字格式元素,包括数据、应用、虚拟机等。 产品推荐: 特赞发布的 DAM.GPT:帮助企业利用 AI 管理数字资产,可通过拖拽图片入库,AI 识别图片内容,建立关联和标注属性,通过关键词搜索获取资产,进行人肉筛选,对资产进行中心化合规管理和分发,以及二次加工生产。 SnackPrompt:提示词共享社区,筛选和新建功能良好,支持复制到 ChatGPT 中,创建提示词时可设置动态字段,还能选择语言、风格和语气。 HeroPage:提示词分享社区,创建提示词时可设置动态内容,支持直接回填到 ChatGPT 使用。 Builder.io:Figma 插件支持用自然语言生成设计稿并修改,能将生成的设计稿转成前端代码复制。 X Studio3:小冰公司的音乐 AI 工具,上传歌词和音乐可指定 AI 语音唱歌,能对音频自定义。 Playlistable:AI 生成播放列表,链接 Spotify 播放列表并输入心情,自动生成符合心情的播放列表。
2024-10-30
大模型的数字资产管理系统
大模型的数字资产管理系统涉及以下方面: 大模型的整体架构: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。 大模型的通俗理解: 大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 企业大模型的误区: 1. 总想搞一个宏大的产业大模型:目前大模型能力不足以支持,更适合在场景里解决专业问题。 2. 总想用一个万能大模型解决所有企业问题:企业不同场景可能需要不同的大模型。 3. 认为有了大模型,原来的 IT 系统就淘汰了:大模型需要与原业务系统连接协同工作,原数字化搞得越好,大模型效果越好。 4. 认为大模型不用做数字化,直接一步到位弯道超车:企业没有基本的 IT 系统、数字化系统,没有数据积累和知识沉淀,无法做大模型。
2024-10-30
AI生成系统架构图 用什么
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-10-30
系统学习人工智能的路径
系统学习人工智能的路径如下: 1. 加入“通往 AGI 之路”社区:这是一个致力于人工智能学习的中文知识库和社区平台,由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等,还会定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 从编程语言入手:可以选择 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 3. 尝试使用 AI 工具和平台:例如使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 5. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 6. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,全面系统地学习 AI 知识和技能,可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,为未来在 AI 领域的发展做好准备。
2024-10-28
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21