Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

学习AIGC网站

Answer

以下是一些关于学习 AIGC 网站的相关信息:

在学术研究和写作中,有以下常用的 AIGC 论文检测网站和工具:

  1. Turnitin
    • 功能:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。
    • 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。
  2. Copyscape
    • 功能:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。
    • 使用方法:输入文本或上传文档,系统扫描网络查找相似或重复内容。
  3. Grammarly
    • 功能:提供语法检查和剽窃检测功能,剽窃检测部分可识别可能由 AI 生成的非原创内容。
    • 使用方法:将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。
  4. Unicheck
    • 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。
    • 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。
  5. Originality.AI
    • 功能:专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT-3 或其他 AI 模型生成。
    • 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。

此外,为了帮助您快速学习 AIGC,以下是一些相关的原理和概念:

  1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。
  2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。
  3. 机器学习:一种手段,让机器自动从资料中找到公式。
  4. 深度学习:一种更厉害的手段,类神经网络 - 非常大量参数的函数。
  5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。
  6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pre-trained 预训练,T:Transformer 类神经网络模型。

AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT 是 AIGC 技术在文本生成领域的一个进展。

AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下:(此处未提供具体公司及地址信息)

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AIGC论文检测网站

在学术研究和写作过程中,AIGC(AI-Generated Content,即人工智能生成内容)论文检测工具能够帮助识别和分析是否有内容由AI生成,以确保学术诚信和原创性。以下是一些常用的AIGC论文检测网站和工具:[heading3]1.Turnitin[content]功能:Turnitin是一个广泛使用的学术剽窃检测工具。最近,Turnitin也增加了检测AI生成内容的功能。使用方法:用户可以上传论文,系统会自动分析文本并提供详细的报告,标示出可能由AI生成的部分。[heading3]2.Copyscape[content]功能:Copyscape主要用于检测网络上的剽窃行为。虽然它并不是专门的AIGC检测工具,但它可以发现可能被AI生成的重复内容。使用方法:输入文本或上传文档,系统会扫描网络以查找相似或重复的内容。[heading3]3.Grammarly[content]功能:Grammarly提供语法检查和剽窃检测功能。其剽窃检测部分可以帮助识别可能由AI生成的非原创内容。使用方法:将文本粘贴到Grammarly的编辑器中,选择剽窃检测功能,系统会提供分析报告。[heading3]4.Unicheck[content]功能:Unicheck是一个基于云的剽窃检测工具,适用于教育机构和学术研究。它可以检测AI生成内容的迹象。使用方法:上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和AI生成内容。[heading3]5.[Originality.AI](http://originality.ai/)[content]功能:[Originality.AI](http://originality.ai/)是专门设计用于检测AI生成内容的工具。它使用先进的算法来分析文本,识别是否由GPT-3或其他AI模型生成。使用方法:上传文档或输入文本,系统会提供详细的报告,包括可能的AI生成内容。

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

Others are asking
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
AIGC工程师
以下是为您整理的 AIGC 相关招聘信息: 猿印教育 AIGC 图像生成算法工程师/专家(北京五道口附近) 简历请发送至:stephen.wang@yyinedu.com 岗位职责: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新的技术发展和业界趋势,积极推动团队技术水平的提升,并将新技术应用到实际项目中。 任职要求: 计算机相关专业本科及以上学历,具备扎实的计算机基础知识。 熟练掌握 Python 语言,熟悉至少一种主流深度学习框架(TensorFlow/Pytorch 等)。 对深度学习和计算机视觉领域的基础理论和方法有深入理解,熟悉 DDPM,DDIM,Stable Diffusion 原理,了解 Dreambooth,ControlNet 等可控生成技术。 具有强烈的技术兴趣和钻研精神,具备良好的学习能力、沟通能力和团队合作精神。 数字银行 AIGC 产品经理(深圳) 请直接飞书联系@Eason 任职要求: 相信 AIGC:有过第一次用 chatgpt 时的兴奋,记得去年那个 AI 疯狂的 3 月份,熬夜看过 gpt4、copilot 的发布会,想过各种办法搞定 plus 账号,现在在翘首以盼 gpt5。 喜欢用:用过各种 AIGC 应用,如 GPT4,newbing,Kimi,Perplexity,Suno 等等。看到新的爆款产品,就会第一时间玩一玩。 能上手:可以简单的上手,不限于调用 api 做个小 demo,会写复杂的提示词,做一个简单的 RAG 应用,文生图、视频,微调模型等。 岗位职责: 构建赋能海量用户的大模型工程化产品,帮助某数字银行塑造技术领先性。 探索和设计工程化产品,来支持更快的 AI 原生应用构建(类似 Langchain,Llamaindex 等等,或者由您亲自来颠覆它们,做一个 Langxx,Llamaxx)。 在重点业务场景中深入探索大模型的应用落地,用最新的理念,做出真正能在海量金融业务场景中跑起来的应用(把类似 MetaGPT,AutoGen,Advanced RAG 真正落地,或者创造自己的 multi agent 应用)。 此外,3 月 2 日接龙中涉及 AIGC 相关人员的工作内容包括: 雯琋(Vinci)AIGC 不会编程但会鼓励编程。 AI 译文打杂文案。 AI 译然,AI 视频相关的都会一点,就是完全不会做网站。 Stanico,产品、运营、prompt。
2025-02-10
AIGC
AIGC 是利用 GenAI(生成式 AI)创建的内容。GenAI 能够从已有数据中学习并生成新的数据或内容。 AIGC 存在多种法律与道德风险: 1. 知识产权方面: 由于与输入数据的关联性,可能造成作品、专利、商标侵权、不正当竞争、侵犯商业秘密等问题。 存在是否构成侵犯著作权的争议,根源在于 GenAI 系统的训练方式。 对于 AIGC 产品是否构成著作权保护的产品以及著作权归属问题,目前存在需要重点探讨的方面。目前中国法律体系下,著作权主体仅限于自然人、法人或者非法人组织,AIGC 是否构成作品尚无法律明确规定,但我国已有认定 AIGC 享有著作权的先例。 2. 其他应用风险: AIGC 本身可能被滥用,产生误导性虚假信息,被用于不法目的。 面临社会伦理风险,可能延续和放大人类作品中的歧视、偏见,生成不当言论,被用于网络攻击、网络炒作和不正当商业营销等。 我国针对 AIGC 的应用出台了一系列法律法规进行规范,如《网络安全法》《数据安全法》《个人信息保护法》《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《网络音视频信息服务管理规定》等。
2025-02-09
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 AIGC 的应用领域广泛,包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 AIGC 作为一种强大的技术,在赋能诸多领域的同时,也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2025-02-07
aigc
AIGC(AIGenerated Content)是利用GenAI(生成式AI)创建的内容。GenAI能够从已有数据中学习并生成新的数据或内容。 AIGC存在多种法律与道德风险: 1. 知识产权方面: 由于AIGC与输入数据的关联性,可能造成作品、专利、商标侵权、不正当竞争、侵犯商业秘密等问题。 关于AIGC产品是否构成著作权保护的产品以及著作权归属存在争议,目前中国法律体系下,著作权主体仅限于自然人、法人或者非法人组织,AIGC是否构成作品尚无法律明确规定,但我国已有认定AIGC享有著作权的先例。 2. 其他应用风险: AIGC可能被滥用,产生误导性的虚假信息,被用于诈骗、恐吓、诽谤等不法目的。 AIGC面临社会伦理风险,可能延续和放大人类作品中的歧视、偏见,生成不当言论,还可能被用于编写恶意软件进行网络攻击、网络炒作和不正当商业营销等。 我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成共同监管形势。《网络音视频信息服务管理规定》也对相关新技术新应用提出了监管要求。 AIGC主要分为语言文本生成、图像生成和音视频生成,在多个领域有广泛应用,但也存在内生风险、数据隐私问题等。
2025-02-07
runway ia 网站入口
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 Runway 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前 Runway 支持在网页(https://runwayml.com/ )和 iOS 访问。网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步,想要更多试用次数的朋友可以下载 iOS 版本。 注册零门槛,在网页右上角 Sign Up 注册,输入邮箱与基础信息,完成邮箱验证即可。 生成第一个视频的步骤如下: 1. 选择左侧工具栏“生成视频”。 2. 选择“文字/图片生成视频”。 3. 将图片拖入框内。 4. 选择一个动画系数。 5. 点击生成 4 秒视频。 6. 下载视频。 在各 AI 视频工具的比较中,Runway 在真实影像方面质感最好,战争片全景的镜头处理得最好,控件体验感较好,但特别爱变色,光影非常不稳定,控制能力最强,可指定局部对象设置运动笔刷。
2025-02-14
推荐些跑团的AI网站
以下为您推荐的跑团相关 AI 网站是 WaytoAGI 网站(https://www.waytoagi.com/),该网站具有以下功能: 1. 您可以在此与 AI 知识库进行对话,询问任何关于 AI 的问题。 2. 集合了精选的 AI 网站,能够按您的需求帮您找到适合的工具。 3. 提供了精选的 AI 提示词,您可以复制到 AI 对话网站使用。 4. 会将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望能成为您学习 AI 路上的好助手。
2025-02-14
国内用那个平台或网站设计 logo 比较好
以下是一些国内可以用于设计 logo 的平台或网站: 1. Looka:在线 Logo 设计平台,利用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。使用这些工具时,通常可根据品牌理念和视觉偏好,通过简单交互获得一系列设计方案,并进一步定制和优化,直到满意为止。
2025-02-13
图片生成提示词的网站
以下是一些图片生成提示词的网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分,网址: OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便您快速可视化生成自己的绘画提示词,网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney,网址: OpenArt:AI 人工智能图像生成器,网址: img2prompt:根据图片提取 Prompt,网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供您选择,网址:
2025-02-13
没有接触过AI的小白刚来到这个网站应该从哪里学习
对于刚接触 AI 的小白,您可以从以下几个方面开始学习: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容方面,由于 AI 节奏快,很多材料可能不适用,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且学习时间灵活,资源免费开源。另外,像元子语从 prompt 开始自己的 AI 之旅,通过参与活动和近距离观察,发现 AI 的门槛并非高不可攀。
2025-02-11
我现在通过ai文本输出这一幅画的描述,那我通过什么软件或者是网站能让它形成一幅图,那最关键的是我形成的这幅图可以在ai或者是ps这种绘图软件上直接进行每一个元素的编辑。怎样我才能最快的做出来。
以下是一些可以根据您的 AI 文本描述生成图片,并能在 AI 或 PS 等绘图软件上直接编辑每个元素的软件和网站: 1. Stable Diffusion 模型:可以根据您输入的文本指令生成图片,生成的图片样式取决于您输入的提示词。 2. Anifusion:这是一款基于人工智能的在线工具,您只需输入文本描述,其 AI 就能将其转化为完整的漫画页面或动漫图像。具有以下功能和特点: AI 文本生成漫画:根据输入的描述性提示生成漫画。 直观的布局工具:提供预设模板,也支持自定义漫画布局。 强大的画布编辑器:可在浏览器中直接优化和完善生成的艺术作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同艺术风格和效果。 商业使用权:用户对创作的作品拥有完整商业使用权。 在进行 AI 作图时,还需注意以下创作要点: 1. 注重趣味性与美感的结合,趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感要在美术基础不出错的前提下实现形式与内容的结合。 2. 像纹身图创作要强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 编写提示词时要用自然语言详细描述画面内容,避免废话词,例如 Flux 对提示词的理解和可控性较强。
2025-02-11
普通人学习ai生图方式
以下是为普通人提供的学习 AI 生图的相关内容: 如何判断一张图片是否 AI 生成: 当我们接触的 AI 制品增多,可通过“整体看光影,细节看结构”的技术要点来找出画面 bug。通过大量分析 AIGC 画作,人们会在脑中形成“判断模型”,但起初可能“知其然,不知其所以然”。从本质上看,人类绘画创作是线性发展,而 AI 是以积累数据、扩散噪声、再降噪收束的路径生图,会导致同一张图呈现不同绘画级别的细节。 Liblibai 简易上手教程: 1. 首页模型广场:展示其他用户的模型,可查看详情、收藏并用于生图。 2. Checkpoint:生图必需的基础模型,必选。 3. Lora:低阶自适应模型,类似 Checkpoint 的小插件,可有可无,用于控制细节。 4. VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 5. CLIP 跳过层:用于生成图片后控制、调整构图变化,一般设为 2。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:选择让 AI 生图的算法。 AI 线上绘画教程: 如果需要大量商用且具艺术美感的图片,AI 生图是高效办法。主流工具如 midjourney 付费成本高,stable diffusion 硬件门槛不低,可选择免费在线 SD 工具网站如。本教程适用于入门玩家,旨在让读者半小时内自由上手创作绘图。
2025-02-14
什么是深度学习
深度学习是源于新的方法和策略,旨在通过克服梯度消失问题来生成深层的非线性特征层次,以训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,便于训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。自 2013 年以来,其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。其突破性研究成果包括反向传播、更好的初始化网络参数等。 在相关技术名词中,深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。
2025-02-14
学习大模型从哪里开始
学习大模型可以从以下几个方面入手: 1. 理解大模型的概念:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用上学参加工作来类比大模型的训练和使用过程。 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,是原始文本数据与大模型可以使用的数字表示之间的桥梁。 2. 了解大模型的整体架构: 基础层:为大模型提供硬件支撑、数据支持,例如 A100、数据服务器等。 数据层:分为静态的知识库和动态的三方数据集。 模型层:包括 LLm(如 GPT,一般使用 transformer 算法)或多模态模型(如文生图、图生图等)。 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 3. 熟悉大模型的发展历程:起源于 2017 年发布的 Attention Is All You Need 论文,之后有众多基于大量语料的预训练模型,如 2018 年 Google 提出的 BERT,开创了双向预训练并行获取上下文语义信息和掩码语言建模(MLM);2018 年 OpenAI 提出的 GPT,开创了仅使用自回归语言建模作为预训练目标;2021 年 Meta 提出的首个开源模型 LLAMA,为构建更大规模、更通用的语言模型提供了方法与工具。
2025-02-14
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 可在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 如果您的学习路径偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习路径偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-14
如何详细学习coze
以下是关于学习 Coze 的详细内容: 新知识学习方法:推荐使用 Claude + Coze 的组合。Claude 是目前强大的 AI 大模型,每月 20 美元,性能出色。Coze 是一款 AI Agent 的衍生产品,其价值主要体现在跟进 AI Agent 工具发展情况、发现商业化机会以及制作产品 Demo 等方面。对于学习 RAG,可先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 并在实践中学习。在学习过程中创建了产品资料问答机器人等 4 个 Bot,相关资料可参考公开分享:。 数据库概念:在学习 AI Agent 过程中,记忆离不开数据库组件。本文从非编程人士角度讲解数据库概念和基本使用,不涉及传统的 SQL 语法,而是通过与 Excel 对比帮助理解,旨在让您更好地利用 ChatGPT 等工具辅助学习。同时预告了关于 AI 时代编程基础系列的大纲。 变现方式:本期 Coze 变现模板(多智能体版)课程大纲包括制作完成后的“变现网站”用户体验、开发者体验以及深入学习 Zion 等内容。未注册过 Zion 需按特定步骤注册并填写邀请码“coze”领取代金券;已注册 Zion 可通过填写表单申请代金券。工作人员将手动发券到账户,两种方式均可获得 VIP 券,后续可用该券建站,使用“coze 变现模板(多智能体版)”模板。
2025-02-13
如何入门和学习AI
以下是新手入门和学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-02-13