Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

目前金融方向的AI创业项目有哪些

Answer

金融领域的AI创业项目主要集中在以下几个方向:

  1. 智能投顾:利用机器学习和算法为个人投资者提供自动化的资产管理和投资建议。
  2. 风险管理:通过大数据分析和预测模型帮助金融机构评估和管理信贷风险、市场风险等。
  3. 欺诈检测:运用AI技术来识别和预防金融交易中的欺诈行为。
  4. 个性化推荐:通过分析客户数据,为金融产品提供个性化推荐。
  5. 智能客服:使用自然语言处理和机器学习技术来提供24小时的自动化客户服务。
  6. 量化交易:开发算法交易系统,利用历史数据来预测市场趋势并自动化交易。
  7. 金融监管技术(RegTech):帮助监管机构和金融机构遵守法规,提高合规性。
  8. 区块链技术:在金融交易中提供透明度和安全性。
  9. 金融知识库:构建专业的金融知识库,提供金融名词解释、市场评论、数据分析和新闻理解等服务。
  10. 金融数据服务:提供金融数据的收集、处理、分析和可视化服务。

根据搜索得到的结果,以下是一些具体的AI创业项目案例:

  • 有连云:致力于帮助客户解决以sales and marketing为主导的应用场景问题,提供金融AIGC服务。
  • 深擎科技:作为内容科技与智能营销服务商,提供从内容生产、加工、分发到触达运营全流程的解决方案。
  • 飞笛科技:财经AIGC生成和分发平台,运用大数据引擎和AI技术赋能金融机构。
  • 摸象科技:提供AI+金融数字员工解决方案,专注于零售金融方向的垂直模型。

这些项目展示了AI技术在金融领域的多样化应用,从提升金融服务效率到增强风险管理能力,再到改善客户体验,AI创业项目正推动金融行业的创新和发展。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
免费AI作图软件
以下是一些免费的 AI 作图软件: 1. draw.io(现在称为 diagrams.net):免费的在线图表软件,支持创建逻辑视图和部署视图等。 2. Archi:免费的开源工具,用于创建逻辑视图。 以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图+AIGC 的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级的在线 AI 思维导图工具,无需注册登录即可使用,支持自动生成节点。 Imagen 3 是一款 AI 绘图工具,具有以下功能点和优势: 功能点: 1. 图像生成:根据用户输入的 Prompt 生成图像。 2. Prompt 智能拆解:自动拆解用户输入的 Prompt,并提供下拉框选项。 3. 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 1. 无需排队:用户可直接使用。 2. 免费使用。 3. 交互人性化:提供人性化的交互设计,如自动联想和下拉框选项。 4. 语义理解:能根据 Prompt 生成符合描述的图像。 5. 灵活性:用户可根据自动联想功能灵活调整 Prompt 以生成不同图像。
2024-12-23
Ai电影风格分类
AI 电影的风格分类众多,以下为您列举一些常见的风格: 墨水渲染 民族艺术 复古黑暗 国风 蒸汽朋克 电影摄影风格 概念艺术 剪辑 充满细节 哥特式黑暗 写实主义 黑白 统一创作 巴洛克时期 印象派 新艺术风格 洛可可 文艺复兴 野兽派 立体派 抽象表现主义 欧普艺术/光效应艺术 维多利亚时代 未来主义 极简主义 黑暗幻想风格 波普艺术 后印象派 表现主义 当代艺术 动画风格 卡通 视觉艺术 漫画书 蒸汽朋克 黑暗主题 微缩模型电影 能生成美漫封面的漫画画面 纯二次元风格人像 威廉森风格 包豪斯风格 安迪·沃霍尔风格 光色主义 魔幻现实主义 批判现实主义 点彩派 克劳德莫奈 桁缝艺术 局部解剖 彩墨纸本 涂鸦 伏尼契手稿 书页 真实的 3D 风格 复杂的 真实感 国家地理 超写实主义 电影般的 建筑素描 对称肖像 清晰的面部特征 室内设计 武器设计 次表面散射 游戏场景图 角色概念艺术
2024-12-23
AI 学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-23
转岗AI产品经理
以下是为您提供的关于转岗 AI 产品经理的相关信息: 有一些人员的经历可供参考,如䷎贤峰,医学学士、计算机 AI 方向硕士,做过多种职业包括产品经理,目前是一家快消品公司财务总监兼董秘;Sundy 有 5 年产品运营经验,目标是转行当 AIGC 产品经理。 ElliotBai 以前是一位有趣的 AI 产品经理,刚从大厂离职,现在全职煮夫。 米可世界正在招聘 AI 产品相关岗位,职位职责包括负责 AIGC 产品建设、优化用户体验流程、关注竞品和用户反馈以推动产品创新优化、辅助推进产品项目落地等。职位要求包括每周实习不少于 4 天,实习期不少于 6 个月,本科及以上学历,产品逻辑清晰,好奇心强、学习能力和创新精神良好,目标感强、有责任心和推动力,有视频、工具产品实习经验者优先。有意者可加微信:vance_stf 。
2024-12-23
如何转岗AI产品经理
以下是关于转岗 AI 产品经理的一些建议和信息: 建议: 1. 积累相关知识:学习计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业知识。 2. 研究项目管理:在产品创新、研发、迭代改进及商业化方面积累项目管理经验。 3. 关注市场动态:通过市场调研和分析,了解客户需求,熟悉竞品分析和定价策略。 招聘信息: 1. 智慧医疗诊断产品的 AI 产品经理: 职责:负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理;通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略;制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行;提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求:本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑;具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 2. 特看科技的 AI 产品经理: 岗位要求:负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先;英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先;2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6 P8 区间。 加分项:有电子商务、企业服务、人工智能、海外产品等行业经验。 希望以上信息对您转岗 AI 产品经理有所帮助。
2024-12-23
优质的生成图片的AI
以下是为您提供的优质生成图片的 AI 相关信息: 图生图产品: 目前比较成熟的通过输入图片生成类似图片的 AI 产品主要有: 1. Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传的照片转换为芭比风格,效果超级好。 这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出。但仍有一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。 文生图工具: 文生图工具是一种利用人工智能技术生成图片的工具。它通过分析输入的文本描述,使用深度学习算法生成相应的图片。目前,市场上有许多文生图工具,其中一些比较受欢迎的工具包括: 1. DALL·E:DALL·E 是 OpenAI 推出的一款文生图工具,它可以根据输入的文本描述生成逼真的图片。 2. StableDiffusion:StableDiffusion 是一款开源的文生图工具,它可以生成高质量的图片,并且支持多种模型和算法。 3. MidJourney:MidJourney 因其高质量的图像生成效果和用户友好的界面设计而受到广泛欢迎,并且在创意设计人群中尤其流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 判断图片是否为 AI 生成: 如果您不善于判断一张图片是否为 AI 生成,可以借助一些网站。例如使用 AI 来鉴别 AI 绘图性质的网页:ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中,可能会出现一些误判,比如有些结构严谨的真实摄影作品,反而会被识别为 AI 作图。这是因为鉴定 AI 自身的逻辑算法,并不能像人类一样综合去考虑不符合人的逻辑的各种表现。
2024-12-23
2024-2028年内最有可能上市的ai创业项目有哪些
以下是对 2024 2028 年内可能上市的 AI 创业项目的一些分析和预测: 1. 企业应用的 AI 催化项目有望较快实现,因其更易于部署。 2. 个人数字娱乐领域通过 AI 技术创造内容的项目预计会有发展。 3. 自动驾驶和机器人技术的突破可能在 2026 年或 2027 年出现。 4. 小参数大模型相关的项目,尤其在手机端应用方面,例如苹果等公司专注的方向,对开发者是利好。 5. 2024 下半年可能会有一批有代表性的 AI 应用跑出来,比如在社交和游戏中的 agent 智能体应用。 6. 可控核聚变技术相关的项目,由于 AI 对能源的强大需求,可能会加速攻克难题并实现商业化。
2024-10-08
我是一位ai初学者,该如何选择学习的方向和材料
对于 AI 初学者,以下是一些选择学习方向和材料的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您偏向技术研究方向,需要学习的内容包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,需要学习的内容包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-19
智能鸿沟和国际协作写认识理解、研究方向、未来
以下是关于智能鸿沟和国际协作的认识理解、研究方向及未来的相关内容: 认识理解: 目前对于智能鸿沟的研究主要集中在人工智能、自动化等相关趋势在不同行业中对劳动力的影响,包括其造成的劳动力跨部门的变化,以及由此产生的劳动力需求和就业机会。 研究方向: 研究不同行业因人工智能的广泛采用所带来的劳动力影响。 探索人工智能在各行业广泛应用所产生的劳动力需求和就业机会。 明确更好地理解和追踪劳动力影响、需求及机会方面存在的研究差距和所需数据。 提出应对上述挑战和机遇的建议。 未来: 在未来的研究中,需要进一步深入探讨智能鸿沟在全球范围内的演变和影响,以及国际协作在应对智能鸿沟方面所能发挥的作用。通过国际间的合作,共同制定策略,以缩小不同国家和地区在人工智能应用和发展方面的差距,促进全球的平衡发展。同时,持续关注人工智能技术的新发展和其对劳动力市场的动态影响,及时调整应对策略。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
AI的细分方向有哪些?需要系统的回答
AI 的细分方向包括以下几个方面: 1. 使用场景: 改善大模型产品的使用体验,使其在面对细分领域需求时更好用。 助力用户工作流,对已有场景进行优化。 细分场景独立实用工具。 AI 社区。 Chatbot。 2. 产品形态: 插件(如 Chat GPT/Chrome 等)。 辅助现有产品能力。 深度结合 LLM 能力的独立网站&应用。 AI 社区。 3. 技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 4. 应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 5. 特定领域应用,如在医疗药品零售领域: 药品推荐系统。 药品库存管理。 药品识别与查询。 客户服务智能助手。 药店运营分析。 药品质量监控。 药品防伪追溯。
2024-12-16
商分工作包含哪些,ai在这个方向上有哪些不错的尝试
商分工作通常包含对市场、客户、产品、竞争等方面的分析,以支持企业的决策制定。 在这个方向上,AI 有以下不错的尝试: 乐易科学院通过 AI 技术,结合量子、暗物质、天体运行规律等能量形式,从多学科讲解国学和传统文化,还能进行批八字、调风水、性格色彩分析等。 AIGC 策划程序美术应用于独立游戏开发,用于游戏宣传。 AI 人像摄影绘画用于照片处理。 B2B AI 营销与 AI 落地项目快速落地,涵盖 AI 训练 to b 出应用、智能体 agent、文生图生视频,美国独立站搭建及工作流给模特戴珠宝饰品,Google seo 与 AI 结合等,同时开发了诸多 AI 工具,如帮 HR 筛选简历的 AI 工具,行业新闻 AI 生成与自动推送的工作流,小红书 AI 生成的工具,Newsletter AI 生成的工具等。 关于人类和 AI 协作效率,哈佛商学院的研究发现:使用 AI 能显著改善工作效率,使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,速度提高 25.1%,结果质量提高 40%。同时,类似 GPT4 这样的模型有能力边界,使用 AI 时,能力越差的被测试者提升越大,高级人才和低级人才的差距会被拉平。过于依赖 AI 可能适得其反。人类和 AI 协作有“半人马”和“机械人”两种方式,“半人马”强调人类主导,根据任务性质调配资源;“机械人”是人与 AI 高度融合,实现人机一体化。
2024-12-15
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
推荐关于每日新闻、财经金融类新闻的AI网站或公众号、播客,需要有深度、时效性强、准确性高,避免八卦网站、小道消息网站和单纯转发其他文章的网站
以下是为您推荐的关于每日新闻、财经金融类新闻的相关资源: AI 新闻写作工具: Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 Writesonic:专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法可根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI:人工智能写作助手,虽主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 金融服务相关: 东方财富网投资分析工具:利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持,例如根据股票历史走势和市场趋势预测未来走势。 其他领域的 AI 应用: 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道。 网易云音乐音乐人平台:AI 音乐作品发布平台,利用音频处理、数据分析技术,为音乐创作者提供作品发布、推广、版权管理等服务。 好好住 APP:AI 家居用品推荐平台,利用数据分析、自然语言处理技术,根据用户需求推荐家居用品。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。同时,生成式 AI 还能在金融服务业中帮助改进内部流程,如在预测方面编写公式和查询、发现模式并建议输入,在报告方面自动创建内容并调整,在会计和税务方面综合总结并提供可能答案,在采购和应付账款方面自动生成和调整相关文件及提醒。
2024-11-18
智能金融在银行领域的应用
智能金融在银行领域的应用主要体现在以下几个方面: 1. 成本效益的运营: 生成式 AI 能使从多个位置获取数据、理解非结构化的个性化情境和非结构化的合规法律等劳动密集型功能效率大幅提高。 但目前仍存在一些挑战,如消费者信息分散在多个不同数据库,交叉销售和预测消费者需求困难;金融服务被视为情感购买,决策树复杂且难以自动化,需要大型客服团队;金融服务高度受监管,人类员工必须参与每个产品流程以确保合规。 2. 人才需求: 数字银行招聘 AIGC 产品经理,任职要求包括相信 AIGC,喜欢使用各种 AIGC 应用,能够上手相关操作,如调用 API 做小 demo、写复杂提示词、做简单的 RAG 应用、文生图、视频、微调模型等。 岗位职责包括构建赋能海量用户的大模型工程化产品,探索和设计支持更快的 AI 原生应用构建的工程化产品,在重点业务场景中深入探索大模型的应用落地。 相关参考资料: 金融服务业将比你想象得更快地接纳生成式 AI:https://a16z.com/2023/04/19/financialserviceswillembracegenerativeaifasterthanyouthink/
2024-10-29
请问现在国内外AI都已实现什么功能?在金融行业都有什么应用?
目前国内外 AI 已经实现了众多功能,以下为您列举部分主要功能及在金融行业的应用: 主要功能: 1. 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 4. 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 5. 交通运输:例如自动驾驶等。 在金融行业的应用: 1. 风控和反欺诈:利用 AI 识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:通过 AI 评估借款人的信用风险,辅助金融机构做出更优的贷款决策。 3. 投资分析:借助 AI 分析市场数据,帮助投资者做出更明智的投资决策。 4. 客户服务:使用 AI 提供 24/7 的客户服务,并回答常见问题。 此外,还有一些具体的应用案例,如东方财富网的投资分析工具利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持;金融风险预警软件利用 AI 分析金融市场数据,提前预警可能出现的风险,如股市下跌、汇率波动等。
2024-10-23
请问现在国内外AI都已实现什么功能?在金融行业都有什么应用?
国内外 AI 已经实现了众多功能,以下为您列举一些主要的应用场景: 1. 医疗保健: 医学影像分析:用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助金融机构做出贷款决策。 投资分析:分析市场数据,辅助投资者做出投资决策。 客户服务:提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:暂未在您提供的知识库中找到相关具体应用。 在金融行业,AI 的应用包括: 1. 网易云音乐音乐人平台:利用 AI 技术为音乐创作者提供作品发布、推广、版权管理等服务。 2. 好好住 APP:利用 AI 技术根据用户的家居风格、需求和预算,为用户推荐适合的家居用品。 3. 东方财富网投资分析工具:利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持。 4. 马蜂窝景点评价功能:利用 AI 技术对游客的评价进行分析和整理,为其他游客提供参考。 5. AI 摄影参数调整助手:一些摄影 APP 利用 AI 分析拍摄场景,自动调整相机参数。 6. AI 音乐情感分析平台:分析音乐的情感表达。 7. AI 家居智能照明系统:利用 AI 和物联网技术,根据用户的习惯和环境变化自动调整灯光亮度和颜色。 8. AI 金融风险预警平台:分析金融市场数据,提前预警可能出现的风险。 9. AI 旅游路线优化平台:根据用户的时间、预算、兴趣等因素,利用 AI 优化旅游路线。
2024-10-23