Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用Coze智能体自动提前飞书知识库内容

Answer

要使用 Coze 智能体自动提取飞书知识库内容,您可以参考以下步骤:

  1. 创建智能体:
    • 手动清洗数据:上节课程是自动清洗数据,自动清洗可能出现数据不准的情况,本节尝试手动清洗以提高准确性。例如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以###分割,可点击编辑修改和删除,然后添加 Bot 并在调试区测试效果。
    • 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度,例如将画小二课程按章节进行人工标注和处理,然后创建自定义清洗数据的知识库。
    • 发布应用:点击发布,确保在 Bot 商店中能搜到。
  2. 创建机器人:
    • 访问 Coze 官网(网址:Coze.cn)创建。
    • 人设与回复逻辑设置。
    • 创建知识库:
      • 飞书知识库:在飞书中选择对应文件夹,一次最多选择 20 个文件(文件多可多建几个知识库),可选择自动进行数据清洗,图片资料会保留,测试对话,目前 Coze 存在不稳定版本,需调试完善。
      • Excel 知识库:可增加其他形式的知识库,上传表格的知识库不要过于复杂,不要有合并表格情况,系统不认不同的 Sheet,数据处理完成会显示 100%进度,加工出来的数据点击添加 Bot 增加到知识库中,然后测试发布和返回。
      • 网页知识库:有自动采集和手动采集两种方式,手动采集需安装插件,可选择批量添加,写入网址,将全站数据解析并保存到知识库,按照默认自动清洗数据。

此外,在前期准备中,梳理 AI 智能体的功能需求时,要注意在稍后读的知识管理场景中,简化“收集”环节,自动化“整理”环节,根据待阅读内容列表的主题和当前阅读兴趣智能“选择”相关内容、推荐个人阅读计划。

Content generated by AI large model, please carefully verify (powered by aily)

References

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:[【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索](https://a1i1hjmvcf0.feishu.cn/docx/JSdDd8ybLo7OHqxmePwcHlbLn3b?from=from_copylink),自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。[heading3]3.1在线知识库[content]点击创建知识库,创建一个画小二课程的FAQ知识库知识库的飞书在线文档,其中每个问题和答案以###分割,暂时不要问为什么。选择飞书文档选择自定义的自定义输入###然后他就将飞书的文档内容以###区分开来,这里可以点击编辑修改和删除。点击添加Bot添加好可以在调试区测试效果[heading3]3.2本地文档[content]本地word文件,这里要注意了~~~如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面画小二这个课程80节课程,分为了11个章节,那训练数据能不能一股脑全部放进去训练呢。答案是~~不能滴~~~正确的方法,首先将11章的大的章节名称内容放进来,如下图所示。章节内详细内容格式如下如所示,如果你再分节的内容,依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理然后选择创建知识库自定义清洗数据,这里不再赘述。[heading3]3.3发布应用[content]点击发布确保在Bot商店中能够搜到,如图所示可以搜索到画小二智能小助手,这个很重要,没有通过发布的获取不到API的。

【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索

网址:Coze.cn2、创建[heading2]2、人设与回复逻辑设置[heading2]3、创建知识库[content]选择文本创建知识库选择飞书,因为我的很多资料都在飞书里面存着[heading3]3.1飞书知识库[content]在飞书里面选择对应的文件夹,一次做多智能选择20个文件(如果文件大于20个可以多建几个知识库)可以选择自动进行数据清洗,数据清洗不是要不数据清楚,而是把数据进行类结构化整理数据清洗进度内容中的图片资料也会保留测试对话,基本反馈正常,目前coze存在不稳定版本,需要不断调试完善。[heading3]3.2 Excel知识库[content]同时也可以增加其他形式的知识库上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的Sheet数据处理完成就显示100%进度加工出来的数据,点击添加Bot,就增加到知识库中测试发布测试返回[heading3]3.3网页知识库[content]选择有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂,等下节课程我们专门分享。这里我们选择批量添加,写入画小二官网的地址https://www.huaxiaoer.com.cn/这里你可以根据需求添加自己的网站然后就将网站所有的页面都扫描出来,点击确认。将全站数据解析并保存到知识库里面按照默认自动清洗数据数据清洗进度将网站所有数据清洗出来将网站添加到知识库里面

一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

在稍后读的知识管理场景中,一般流程如下:1.发现内容:在浏览网页、社交媒体时发现感兴趣但当前不方便阅读的文章或内容。2.收集内容:通过浏览器插件、分享到App或复制链接等方式将内容保存到稍后读服务。3.整理入库:通过内容标题、内容主题、来源平台分类等方式对阅读清单进行整理标记(一般多为人工)。4.选择内容:根据收藏时间排序、个人兴趣,在阅读清单中,自行选择下一步阅读内容。5.阅读内容:根据筛选结果,阅读内容,逐步清空阅读清单。仔细观察这5个步骤,我们会发现真正与用户稍后读需求直接相关的只有"发现"、"收集"和"阅读"。虽然"整理"和"选择"环节只是稍后读管理的衍生步骤,却往往占用了大量知识管理时间。特别是当阅读清单积累大量记录时,根据当前兴趣挑选内容变得更加耗时。这直接导致许多人虽然收藏了大量待阅读的内容,但由于整理不到位、选择内容不方便,最终陷入"藏而不读"的困境。另外,"收集"环节的便利性也至关重要。由于"收集"本身并不能直接带来阅读收益,自然是操作路径越短、越简单越好。这也是大家都喜欢用微信文件传输助手临时收藏内容的原因。基于以上分析,我们可以得出对AI稍后读的功能需求:1.尽可能简化“收集”环节2.自动化“整理”环节3.根据待阅读内容列表的主题和当前阅读兴趣,智能"选择"相关内容、推荐个人阅读计划

Others are asking
飞书ai的提示词
以下是关于飞书 AI 提示词的相关内容: 提示词模板和资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 在星流一站式 AI 设计工具中的提示词: 提示词用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化方面,启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 写好提示词的要点包括:内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量;调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容;利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先。此外,还有预设词组供小白用户选择,以及辅助功能,如翻译功能可一键将提示词翻译成英文,删除所有提示词可清空提示词框,会员加速可提升图像生图速度。 在 AI 商用级问答场景中的提示词: 提示词是告诉全知全能的大语言模型,它是一个什么样的角色、要专注于哪些技能,使其能够按照您的想法变成所需的“员工”。例如设定角色为“美嘉”,按照其人设、背景和对话风格做设定。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
将deepseek接入飞书
以下是关于将 DeepSeek 接入飞书的相关信息: 学而思表示将接入 DeepSeek“深度思考模式”,预计将在 2 月内陆续于相关机型上线,全面升级用户的 AI 学习体验。 钉钉已经全面接入 DeepSeek 系列模型。 扣子现已支持满血版 Deepseek 全家桶,R1 模型现支持所有用户免费体验,每个用户每日限 20 条对话。 接入方法和途径: 2 月 14 日 8 点有关于在 Coze 搭建满血版 R1 bot 的直播,直播结束后可看回放,地址为: 。 学习文档: 。 创建账号:如果是普通账号,请自行升级或注册专业号后使用。 创建智能体:点击创建,先完成一个智能体的创建。如果在最上面的教程里已经创建好自己的推理点了,那么直接在 Bot 编排里就可以直接看到和选择创建好的推理模型。 在飞书多维表格上调用 DeepSeek 的自定义 AI(DeepSeek 版)地址为:https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,支持 DeepSeek 官方、火山方舟、硅基流动三个服务商。 如有任何问题请联系后台,电子邮箱:alolg@163.com 。 注意事项:如果发布到公共空间,其他人用的是您的 API,要注意 Token 消耗(也可以设置成仅自己使用)。
2025-02-17
飞书接入deepseek 多维表格处理案例
以下是关于飞书接入 DeepSeek 多维表格处理的相关案例和信息: 自定义 AI(DeepSeek 版):https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 有案例如“笨笨 v 泡泡”的 deepseekr1:7b 模型行测试题分析过程及结果,可参考:https://mp.weixin.qq.com/s/kjYiRS9RE25vywm0EsP6A?token=8615663&lang=zh_CN 。 相关文章和教程: 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》:https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb 。 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》:https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh 。 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》:https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q ,介绍了如何结合实现批量处理信息、提升工作效率等。 飞书多维表格的接入方法在整理列上这两天直播教程中的所有模板中有提及。 2 月 10 日的社区动态中有 DeepSeek R1 赏析分享会等相关内容。 2 月 14 日的社区动态中有关于另外一款推理模型 zero 的推理过程等相关内容。
2025-02-17
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
怎么做一个知识库智能问答机器人?
要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下: 1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。 3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。 此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。
2025-02-18
知识库搭建
知识库搭建主要包括以下几个方面: 1. “拎得清、看得到、想得起、用得上”的核心步骤: 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎、加入优质社群和订阅号等建立信息通路,具备信息嗅探能力。 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 想得起:强调信息的内化和知识线索建立,做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时能从知识库中调取相应信息。 2. RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 RAG 是当需要依靠不包含在大模型训练集中的数据时的主要方法,首先检索外部数据,然后在生成步骤中将其传递给 LLM。 RAG 应用包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。 3. 智能体知识库创建: 手动清洗数据,提高数据准确性。 在线知识库:创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 发布应用:确保在 Bot 商店中能搜到。
2025-02-18
知识库搭建
知识库搭建主要包括以下几个方面: 1. “拎得清、看得到、想得起、用得上”的核心步骤: 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎、加入优质社群和订阅号等建立信息通路,具备信息嗅探能力。 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 想得起:强调信息的内化和知识线索建立,做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时能从知识库中调取相应信息。 2. RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 RAG 是当需要依靠不包含在大模型训练集中的数据时的主要方法,首先检索外部数据,然后在生成步骤中将其传递给 LLM。 RAG 应用包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。 3. 智能体知识库创建: 手动清洗数据,提高数据准确性。 在线知识库:创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 发布应用:确保在 Bot 商店中能搜到。
2025-02-18
知识库框架
以下是关于知识库框架的相关内容: 智能体的目标和框架: 智能体的交互能力:包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用(如引导用户输入车辆信息便于大模型理解和分析)以及上下文说明。 智能体的知识体量:涵盖豆包大模型本身的行业数据和语料库、知识库(包括结构化数据与非结构化数据),以及创建知识库的步骤和参赛用知识库,还涉及大模型 RAG 检索、大模型的选择和参数设定以及新模型的调用方法。 智能体的记忆能力:包含变量、数据库和信息记录。 知识: 外置知识是由外部数据库提供,能动态更新和调整。涉及多种数据存储和组织方式,如向量数据库(常用于处理和索引非结构化数据)、关系型数据库(适用于事务性数据存储)、知识图谱(适合复杂语义分析和知识推理)。在实际应用中,外置知识的集成和管理常采用 RAG 架构,能结合检索和生成,增强模型生成能力,实时检索和整合最新外部信息。 陈财猫团队的提示词相关知识库文章索引:
2025-02-18
什么样的智能体才是真正的智能体
真正的智能体具有以下特点和类型: 特点:能够感知环境,采取行动以实现特定目标。可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当大脑,并具备规划、反思完善、记忆和工具使用等关键组成部分。 规划:包括子目标分解和反思完善,将大型任务分解为小的子目标,并能从错误中吸取教训改进未来步骤。 记忆:有短期记忆用于上下文学习,长期记忆用于长时间保留和回忆信息,通常通过外部向量存储和快速检索实现。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息。 类型: 决策智能体:使用语言模型遍历预定义的决策树。 轨道智能体:配备更高层次的目标,限制解决空间,遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体:完全依赖语言模型的推理能力进行所有的计划、反思和纠正,没有任何数据支架的 for 循环。
2025-02-18
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17