直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

COMFYUI的好处

回答

ComfyUI 具有以下好处:

  1. 对显存要求相对较低,启动速度快,出图速度快。
  2. 具有更高的生成自由度。
  3. 可以和 webui 共享环境和模型。
  4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。
  5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。

此外,ComfyUI 采用连线的方式具有独特优势:

  1. 可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。
  2. 可以根据自己的需求,去开发并改造某个节点。

选择 ComfyUI 最核心的原因在于它的自由和拓展,能够让用户自己调整从而切合工作流,甚至改造工作流。在 AI 发展迅猛的时代,保持灵活是其重要特点。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

ComfyUI基础教程—小谈

[title]小田:ComfyUI基础教程—小谈[heading3]一.什么是ComfyUI:应用场景为什么使用(为什么要使用)不可替代性了解ComfyUI的概念和重要性首先SD WebUI的UI更像是我们传统使用的产品,有很多输入框,还有多个按钮。而ComfyUI的UI界面则非常复杂,除了输入框,还有很多一块块的东西,并且还有很多复杂的连线。的确,从学习成本来看,ComfyUI的学习成本会比SD WebUI高。但是这种连线其实并不复杂,你可以这么理解:这些小的方块跟SD WebUI的输入框和按钮是一样的,都是对参数进行配置。连线有点像在搭建一个自动化的工作流,从左到右依次运行。从功能的角度看,其实两个产品截图所提供的功能是一样的,只是ComfyUI变成了这种连线的方式。这种方式有很什么好处了?我们一起来看看这两个用ComfyUI搭建的工作流:对比两个工作流,你会发现它只是有一个节点不一样,一个是直接加载图片,一个是通过画板绘制图片。这样就实现了两个不同的功能(一个是导入图片生图,一个是绘图生图)。这就意味着,你可以通过改变节点的方式来改变工作流,从而实现不同的功能。这样做有两个好处:你可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。你也可以根据自己的需求,去开发并改造某个节点。所以,选择ComfyUI最核心的原因就在于它的自由和拓展。那这就意味着你可以自己调整ComfyUI从而让它切合你的工作流,甚至改造你的工作流。在现在这种AI发展如此迅猛的时代,我认为保持灵活才是最重要的。说了这么多,我们来看一下ComfyUI的相关案例生成四格故事漫画

小田:ComfyUI基础教程—小谈

[title]小田:ComfyUI基础教程—小谈[heading3]一.什么是ComfyUI:应用场景为什么使用(为什么要使用)不可替代性了解ComfyUI的概念和重要性首先SD WebUI的UI更像是我们传统使用的产品,有很多输入框,还有多个按钮。而ComfyUI的UI界面则非常复杂,除了输入框,还有很多一块块的东西,并且还有很多复杂的连线。的确,从学习成本来看,ComfyUI的学习成本会比SD WebUI高。但是这种连线其实并不复杂,你可以这么理解:这些小的方块跟SD WebUI的输入框和按钮是一样的,都是对参数进行配置。连线有点像在搭建一个自动化的工作流,从左到右依次运行。从功能的角度看,其实两个产品截图所提供的功能是一样的,只是ComfyUI变成了这种连线的方式。这种方式有很什么好处了?我们一起来看看这两个用ComfyUI搭建的工作流:对比两个工作流,你会发现它只是有一个节点不一样,一个是直接加载图片,一个是通过画板绘制图片。这样就实现了两个不同的功能(一个是导入图片生图,一个是绘图生图)。这就意味着,你可以通过改变节点的方式来改变工作流,从而实现不同的功能。这样做有两个好处:你可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。你也可以根据自己的需求,去开发并改造某个节点。所以,选择ComfyUI最核心的原因就在于它的自由和拓展。那这就意味着你可以自己调整ComfyUI从而让它切合你的工作流,甚至改造你的工作流。在现在这种AI发展如此迅猛的时代,我认为保持灵活才是最重要的。说了这么多,我们来看一下ComfyUI的相关案例生成四格故事漫画

其他人在问
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
comfyui做视频
以下是关于 comfyui 做视频的相关信息: 一些人员在相关领域的情况: 德方:18600081286,从事设计、建模、绘图、效果图、视频工作。 谌峰:13925911177,从事视频,人物,室内设计工作。 陈铭生:18861511571,利用 comfyUI 做 AI 视频,掌握 comfy 工作流设计,给一些公司定制 comfy 流程。 郑路:18868755172,进行出图、短视频创作。 塵:从事绘图与视频工作。 阿牛:13720121256,掌握 comfy 工作流。 Stable Video Diffusion 模型核心内容与部署实战中 ComfyUI 部署实战的相关步骤: 运行 ComfyUI 并加载工作流。在命令行终端操作,在浏览器输入相应地址,出现界面。默认的 ComfyUI 版本存在一些问题,需安装 ComfyUI Manager 插件。再次运行 python main.py 出现 Manager 菜单,可跑文生视频的工作流。工作流可从指定途径获取,使用 ComfyUI 菜单的 load 功能加载,点击菜单栏「Queue Prompt」开始视频生成,通过工作流上的绿色框查看运行进度,在 ComfyUI 目录下的 output 文件夹查看生成好的视频。若生成视频时出现显存溢出问题,有相应解决办法。 关于 ComfyUI 的介绍:现在甚至可以生成视频等,包括写真、表情包、换脸、换装等,只需要一个工作流一键完成,后续会一一讲解介绍如何使用。如何启动搭建 Comfyui 界面的部分简单带过。
2024-11-09
comfyui教程
以下是为您提供的 ComfyUI 教程相关信息: 有几个网站提供了关于 ComfyUI 的学习教程: ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ 此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-11-09
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-11-09
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-06
ComfyUI 工作流
ComfyUI 的工作流是其核心部分,指的是节点结构及数据流运转过程。以下为您介绍一些相关内容: 推荐工作流网站: “老牌” workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后,每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 工作流设计方面: ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出复用工作流。 模仿式工作流是一种快速学习方法,Large Action Model 采用“通过演示进行模仿”的技术,从用户示例中学习。 但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题。 动画工作流示例: :https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1
2024-11-04
用100字概括AI的好处,和普通人如何开始使用AI
AI 的好处众多,如辅助创作与学习、推荐与规划、监控与预警、优化与管理、销售与交易等。普通人开始使用 AI 可通过以下方式:英语学习可利用智能辅助工具如 Grammarly 纠错,用语音识别应用如 Call Annie 练习发音;数学学习可用自适应学习系统如 Khan Academy 定制学习路径等。结合 AI 与传统方法能提高学习效果。
2024-11-13
帮我写一段200字的英文,回答这个问题:学会开车这个新技能的好处
Learning to drive has numerous benefits. Firstly, it offers greater independence and flexibility in your daily life. You can travel wherever and whenever you want without relying on public transportation or others. Secondly, it saves time as you can avoid waiting for buses or trains. Moreover, it expands your job opportunities as some positions require a driving license. Driving also enables you to take spontaneous trips and explore new places, enhancing your quality of life and providing more freedom and convenience.
2024-11-04
普通人学习AI有哪些好处
以下是普通人学习 AI 的一些好处: 有助于在医疗保健领域带来改变,例如医生可将文档工作交给 AI 书记员,初级医疗服务提供者可依赖聊天机器人进行分诊,加速药物开发等。 能够为在特定领域成为顶尖人才打下基础,像医学领域,需要多年的密集信息输入和实践学习,AI 学习也类似。 可以培养处理复杂情况和细微差别的决策直觉,例如在分子层面的差别处理。 了解 AI 如何在没有直接从人类获取数据的情况下,通过观察来学习和模仿人类行为,这被视为向人工通用智能迈进的一步。 需要注意的是,以上内容是基于提供的资料进行的总结和整理。
2024-11-01
公司数字化转型对于客户服务增值有什么好处?如何平衡技术和个性化,人性化服务
公司数字化转型对客户服务增值的好处包括: 1. 个性化服务:利用 AI 分析客户行为数据,深入了解客户需求和偏好,为其提供定制化的产品推荐和服务,如电子商务网站根据用户购物历史和浏览习惯推荐相似产品,在线零售商利用客户购买数据推荐新产品或补充产品,从而提升客户体验和忠诚度。 2. 定制化沟通和推广:通过更具针对性的沟通和营销活动加强与客户的关系,提高忠诚度。根据客户偏好和行为数据定制营销活动,在客户支持和沟通中采用个性化方法,定期收集客户反馈并用于优化服务和产品,监控效果并不断优化推荐和营销策略。 3. 提升操作效率:Token 化在自然语言处理中应用,将大段文本分解成小块处理单元,便于管理和分析复杂文本数据,使 AI 模型快速识别关键信息,加速决策过程,提升业务响应速度。 4. 优化客户服务:Token 化使客户服务自动化成为可能,通过自动响应系统快速准确处理客户请求,极大提升客户满意度和品牌忠诚度。 5. 个性化营销:利用 Token 化分析用户行为和偏好,提供高度个性化的营销内容,增加销售转化率。 在平衡技术和个性化、人性化服务方面,可以采取以下措施: 1. 深入挖掘客户数据,同时注重保护客户隐私和数据安全。 2. 结合人工干预和监督,确保服务的人性化和温度。 3. 持续收集客户反馈,根据反馈调整技术应用和服务策略。 4. 培训员工,使其在运用技术的同时能够提供贴心的服务。
2024-10-16
AI 中文写Prompt比英文写Prompt有哪些好处
AI 中文写 Prompt 比英文写 Prompt 的好处主要体现在以下方面: 1. 对于用户来说,用中文书写 Prompt 可能更符合其语言习惯和思维方式,便于更清晰、准确地表达需求和意图。 2. 但需要注意的是,在实际操作中,由于英文的 Token 占用相对中文较少,很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出。这样可以节省 Token,将更多的 Token 留给更多次数的对话。 3. 为了更好地控制效果,建议结构化书写 Prompt,不过实操中写 Prompt 通常要用英文。
2024-08-15